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Abstract

Protein–protein interactions (PPIs) are fundamental in the majority of cellular pro-

cesses and their study is of enormous biotechnological and therapeutic interest. The

computational prediction for elucidation of PPI networks is crucial in biological fields.

However, the development of an effective method to conduct exhaustive PPI screening

represents a computational challenge.

In this dissertation, we proposed a novel PPI network prediction system called

MEGADOCK based on protein–protein docking calculation with protein tertiary struc-

ture information. MEGADOCK reduced the calculation time required for docking by

using new score functions, rPSC and RDE, and was implemented on recent parallel

high-performance computing environments by employing a hybrid parallelization with

MPI and OpenMP and general-purpose graphics processing unit technique.

We showed that MEGADOCK is capable of exhaustive PPI screening and completed

docking calculations 9.8 times faster than the conventional method (Mintseris, et al.

2007) while maintaining an acceptable level of accuracy. When MEGADOCK was

applied to a subset of a general benchmark dataset to predict 120 relevant interacting

pairs from 14,400 protein combinations, an F-measure value of 0.231 was obtained.

Moreover, the system was scalable as shown by measurements carried out on two

supercomputing environments, TSUBAME 2.0 and K computer.

It is now feasible to search and analyze PPIs while taking into account three-

dimensional structures at the interactome scale. We demonstrated the applications

to pathway analyses, bacterial chemotaxis, human apoptosis, and RNA binding pro-

teins by using our system. As an example of the results, when analyzing the positive

predictions of bacterial chemotaxis pathway from MEGADOCK, all the core signaling

interactions were correctly predicted with the exception of interactions activated by

protein phosphorylation.

Large-scale PPI prediction using tertiary structures is an effective approach that has

a wide range of potential applications. This method is especially useful for identifying

novel PPIs of new pathways that control cellular behavior.
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4.1 The selected 44 complex structures from the protein–protein docking

benchmark 2.0 dataset (small dataset) . . . . . . . . . . . . . . . . . . 57

4.2 The selected 120 complex structures from the protein–protein docking

benchmark 4.0 dataset (large dataset) . . . . . . . . . . . . . . . . . . . 58

4.3 Results of 44× 44 protein–protein interaction predictions . . . . . . . . 60

4.4 The selected 102 complex structures from the dockground 3.0 benchmark

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Divided dataset located to the Nucleus subcellular location . . . . . . . 64

4.6 Divided dataset located to the Mitochondrion subcellular location . . . 65

4.7 Divided dataset located to the Golgi apparatus subcellular location . . 65

5.1 Proteins that constitute the chemotaxis system. . . . . . . . . . . . . . 72

5.2 Chemotaxis dataset derived from PDB. . . . . . . . . . . . . . . . . . . 74

5.3 Results of the PPI predictions using the proposed system with E∗ = 7.3.

The interactions estimated as positive are marked with asterisks. The

gray colored cells correspond to the known interactions. . . . . . . . . 77

6.1 PDB IDs of human apoptosis pathway protein from hsa04210 KEGG

pathway (124). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 PDB chains of human apoptosis pathway protein from hsa04210 KEGG

pathway (158 chains). The first 4 characters before ‘ ’ represent PDB

ID and the last 1 character after ‘ ’ represents chain name. . . . . . . . 85

6.3 The prediction results of the human apoptosis pathway. The row of

“PRISM” shows results of [114]. . . . . . . . . . . . . . . . . . . . . . . 92

7.1 List of the PDB IDs of the 78 protein–RNA complexes used. . . . . . . 101



LIST OF TABLES xxi

7.2 Results for protein–RNA re-docking test of MEGADOCK and ZDOCK.

The gray cells are RMSDbest = 1. “-” indicates that there was no near-
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Chapter 1

Introduction

1.1 Protein–Protein Interaction (PPI)

In the field of life sciences and medical/pharmaceutical sciences, elucidation of regu-

latory relationships among the millions of protein combinations that function in living

cells is crucial for understanding the mechanisms underlying diseases and for the de-

velopment of medicines [1]. Predicting protein–protein interaction (PPI) networks at

the genome scale is one of the main topics of interest in systems biology [2].

PPIs have been extensively investigated from the perspectives of biochemistry, quan-

tum chemistry, and molecular dynamics. Several methods to determine PPIs have

been developed. One of the main goals of proteome and interactome analyses is to

identify proteins with the potential to bind and interact with each other; this is called

PPI screening. High-throughput but noisy biological experiments, such as the yeast

two-hybrid system [3], and precise but low-throughput methods, such as fluorescence

resonance energy transfer [4], have been frequently used as experimental methods for

PPI screening.

There are also computational methods for PPI prediction [5, 6, 7, 8, 9, 10, 11, 12,

13, 14]. Some successful methods include those based on protein sequences [5, 6, 7],

evolutionary information [8, 9], and domain interaction information [10, 11]. Because

protein structure provides fundamental information about function, computational PPI

screening methods based on the known structures of protein complexes are also being

considered [12, 13, 14]. Tertiary structural information also provides powerful features

for recognition [15, 16], and is therefore useful for predicting binding affinity [17] in

protein–protein complexes. However, the performance of these computational methods

is highly dependent on known PPI information. These methods only detect interacting

3
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Figure 1.1: Protein-protein docking between two proteins (generated using Py-
MOL [21])

protein pairs resembling those of known protein complexes. Therefore, they do not

completely reflect the structural basis of PPIs.

In structural biology, computational methods such as atomic-level molecular-

dynamics simulations have been primarily applied to analyze in detail the mechanisms

of individual protein interactions based on the physical behavior of atoms [18]. How-

ever, these methods are not applicable to the large-scale analyses required in systems

biology, because the analyses are computationally expensive to perform. To fully uti-

lize many protein tertiary structures deposited in the public database [19] that has

continued to increase in recent years [20], we focused our attention on a rigid-body

protein–protein docking method．

1.2 Rigid-Body Protein–Protein Docking

Rigid-body protein–protein docking is one of the effective solutions to predict a large-

scale PPI network in realistic computation time (Fig. 1.1). Since PPIs mostly provoke

conformational changes and treat protein structures with less flexibility, rigid-body

protein–protein docking cannot conduct accurate calculations. Nevertheless, rigid-

body docking can be calculated much faster than other methods that allow structural

flexibility. It is by far the only effective method to introduce structural data for analysis

at the proteome scale.

Rigid-body protein–protein docking methods have been applied as the initial stage

for small-scale PPI network prediction [22, 23, 24]. Besides providing a useful technique



1. Introduction 5

to help study fundamental biomolecular mechanisms, docking tools to predict PPIs are

emerging as promising complementary approaches to rational drug design [25].

Rigid-body protein–protein docking has been implemented in various ways, including

fast Fourier transform (FFT) convolution of 3D voxel space as proposed by Katchalski-

Katzir [26] (MolFit [26, 27], FTDock [28], PIPER [29], ZDOCK [30, 31, 32, 33, 34], and

pyDock [35, 36]), and others consider shape complementarity of local surface struc-

ture (PatchDock [37], LZerD [38], and Hex [39, 40]). RosettaDock [41, 42], BiG-

GER [43], FireDock [44], FiberDock [45], and EigenHex [46] take flexibility of main-

and side-chains into account. Some of these flexible docking methods have successfully

predicted protein complexes of targets used in the protein-complex structure predic-

tion community-wide experiment called critical assessment of prediction of interactions

(CAPRI). CAPRI is a blind prediction competition that does not release the structure

of the protein complex judged by CAPRI assessors until after the submission of a

target [47, 48, 49, 50]. However, the rigid-body docking methods are still used in situ-

ations such as pre-processing for considering flexibility, required calculation speed, and

application to a large-scale problem.

Wass, et al. reported that the score distribution generated by the rigid-body protein–

protein docking tool Hex showed significant difference between known interacting pairs

and non-binding pairs when they used only shape complementarity for the scoring func-

tion [22]. Nonetheless, more investigation is required on the features of the computa-

tional methods, such as the scoring functions that best fit the problem and parameter

spaces that produce predictions. Here, we propose a novel score function for rigid-body

docking by taking into account electrostatic forces as well as shape complementarity.

Such docking-based prediction of PPI has an advantage because it also produces sev-

eral candidates for presumable docking poses. This provides insight into how the two

predicted proteins undergo interactions according to their structural properties.

ZDOCK [30, 31, 32, 33] has been by far the most successful among the rigid docking

tools [51]. ZDOCK employs voxel models in which protein complexes are divided into

three-dimensional (3D) voxels and scored by the correlation functions of each discrete

function. The ZDOCK scoring function comprises pairwise shape complementarity

(PSC), electrostatics, and interface atomic contact energy score (IFACE) [33] for es-

timating desolvation free energy; in total, eight correlation functions are calculated

by FFT. Generally, FFT-based docking tools that search the entire 3D grid space for

presumable docking positions perform better than local search-based tools. With more

correlation functions, it is possible to incorporate more features to evaluate docking

pose, although the number of the correlation functions linearly affects calculation speed.
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Matsuzaki, et al. applied ZDOCK to PPI screening and predicted whether two proteins

interact by analyzing the high-scoring decoys produced by a rigid docking process [23].

Yoshikawa, et al. also developed a PPI screening method and used ZDOCK and their

original post-docking process called affinity evaluation and prediction (AEP) [24]. How-

ever, to search the entire interactome space using these methods involves combinations

of 1,000 proteins (1 Mega combinations). Thus, ZDOCK has limitations regarding

computation time, increasing its flexibility is also unrealistic. Therefore, increasing the

speed of rigid-body docking calculations is crucial.

1.3 High–Performance Computing

To realize large-scale PPI network prediction using tertiary structures, efficient ex-

ecution by supercomputing environments is crucial. In recent years, the field of high-

performance computing has been rapidly evolving. For example, Japan has powerful

supercomputers such as the K computer [52] at RIKEN and TSUBAME 2.5 [53] at

Tokyo Institute of Technology ranked 4th and 11th in the TOP500 list, respectively, in

November 2013 [54]. Fully utilizing these large scale calculation environments makes

large-scale PPI network prediction of the proteome scale possible.

In addition, the performance gained by use of accelerators has also attracted at-

tention in recent years. The number of supercomputers equipped with accelerators,

such as the graphics processing unit (GPU) of NVIDIA and many integrated core

(MIC) architecture of Intel, is increasing [54]. An advantage of GPUs is that they

consume power more efficiently. In the Green500 list (November 2013) [55] that ranks

the TOP500 supercomputers by Flops/Watt, the top 10 machines were all equipped

with NVIDIA Tesla GPUs. Taking advantage of the acceleration features available

with these accelerators is important to fully utilize the supercomputers that will evolve

in the future.

1.4 Purpose of Study

In the present study, we describe the development of a rigid-body docking-based

method for PPI screening based on exhaustive calculations of pseudo-binding ener-

gies among pairs of target proteins that can be applied to PPI prediction problems of

megaorder data. To enable applications to 1 megaorder combinations, we developed

efficient FFT-based protein–protein docking software called MEGADOCK that is exe-
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cutable on current supercomputing environments and makes it possible to conduct ex-

haustive PPI screening. MEGADOCK searches the relevant interacting protein pairs

by conducting protein–protein docking between the tertiary structures of the target

proteins and then analyzes the distributions of high-scoring decoys (candidate protein

complexes).

Applications of MEGADOCK to real biological PPI network predictions are also one

of the purposes of this study. We apply MEGADOCK to several pathway reconstruc-

tion problems, and then we evaluate our prediction performance and detect new PPI

candidates for enrichment of known biological pathways.

1.5 Summary of Contributions

The contributions of this thesis are classified into three categories (i) development

of a novel protein–protein docking method that is 9 times faster with the same level of

accuracy than a conventional tool, (ii) parallelization and acceleration of PPI prediction

calculations compatible with modern supercomputing environments, and (iii) broader

applications of the proposed system to real biological networks. We now describe these

in more detail.

• We proposed a novel shape complementarity score function called real Pairwise

Shape Complementarity (rPSC) for FFT-based rigid-body protein–protein dock-

ing calculations. The rPSC function that uses only real number representations

for shape complementarity was correlated with a conventional score function

represented by a complex number. We also proposed a novel desolvation free

energy function called Receptor Desolvation Free Energy (RDE). Therefore, it is

possible to calculate a total energy score that includes shape complementarity,

electrostatic interactions and desolvation effects with only one FFT correlation.

As a result, the proposed method was shown to be 9.8 times faster than the

conventional tool ZDOCK 3.0 while maintaining acceptable docking prediction

accuracies.

• We implemented our protein–protein docking method to be suitable for running

on supercomputers by using hybrid parallelization with Message Passing Inter-

face (MPI) and Open Multi-Processing (OpenMP), where a number of docking

processes are distributed among the nodes by MPI with each docking process

that is also calculated in parallel by threads using OpenMP within one node.

This implementation has significant advantages that (i) save memory space and
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(ii) avoid a large overhead because of handling data communication on numerous

core systems such as the K computer running a flat MPI implementation. As a

result, we obtained a strong scaling value that is a type of evaluation value for

parallel efficiency, of over 0.95 out of a maximum of 1.00 in both the K computer

and TSUBAME 2.0.

• We enabled the use of recent computing systems by taking advantage of GPU

features. We implemented not only FFT calculations but also generated grid

(voxelization) and rotation of protein structures on GPUs to reduce the cost

of data transfers. As a result, the system achieved 13.9-fold acceleration using

1 CPU core and 1 GPU, and 37.0-fold acceleration using 12 CPU cores and 3

GPUs by making full use of heterogeneous computing resources.

• We developed the MEGADOCK system for exhaustive PPI screening, that con-

ducts protein–protein docking and post-analysis with reranking technique on pro-

tein tertiary structural data. For the detection of the relevant interacting protein

pairs, we obtained better accuracy than the prediction without reranking tech-

nique. when our method was applied to a subset of a general benchmark dataset.

• We performed real applications in the field of systems biology. In this study, we

applied MEGADOCK to (i) a bacterial chemotaxis pathway and (ii) a human

apoptosis pathway to reconstruct pathways and determine unknown interactions.

In the chemotaxis pathway analysis, all core signaling interactions were correctly

predicted with the exception of interactions activated by protein phosphorylation.

In the apoptosis pathway analysis, the prediction results included several new PPI

candidates that might be suitable targets for drug discovery.

• We compared MEGADOCK with other structure-based PPI screening tools:

(i) ZDOCK [33] that has similar scoring functions to MEGADOCK and (ii)

PRISM [14] that is a template-based PPI prediction tool. The predicted in-

teractions generated from MEGADOCK and ZDOCK in chemotaxis pathway

analysis were slightly different; however when the positive predictions from both

tools were combined, the vast majority of relevant interactions were represented.

Indeed, there were only two exceptions, both requiring phosphorylation to acti-

vate the corresponding interaction. The consensus between template-based and

non-template-based methods successfully predicted the PPI network more accu-

rately than the conventional single template-/non-template-based methods. Be-

cause such precise prediction reduces biological screening costs, it should further
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promote interactome analysis.

1.6 Thesis Organization

The remaining chapters of this thesis are organized as follows: Chapter 2 reviews

the protein–protein docking study focusing mainly on FFT-based rigid-body protein–

protein docking methods. Chapter 3 describes a new protein–protein docking method,

called MEGADOCK, with a novel shape complementarity model called rPSC and sim-

ple hydrophobic interaction model. Chapter 4 presents a new PPI prediction method

by using our protein–protein docking tool and its application to pathway analyses. Case

studies on specific pathways are described in Chapter 5 for bacterial chemotaxis, and

in Chapter 6 for human apoptosis. In Chapter 7, we apply our PPI prediction method

to protein-RNA interaction predictions by extending atomic parameters for ribonucleic

molecules. In Chapters 8 and 9, we discuss the combination of our method and other

structure-based information. In Chapter 8, we apply two different rigid-body docking

tools, MEGADOCK and ZDOCK [33], with different scoring models. In Chapter 9,

we combine a template-based PPI prediction tool (PRISM [14]) and a non-template-

based PPI prediction tool (MEGADOCK). Conclusions are presented in Chapter 10

together with future work and discussion. In addition, we report MEGADOCK with

high-performance computing in Appendices A and B. Appendix A describes our im-

plementation by MPI/OpenMP hybrid parallelization and execution results on two su-

percomputing environments, K computer and TSUBAME. Appendix B reports GPU

implementation and execution results using TSUBAME GPU computing.

This thesis is based on the following publications by the author: [56, 57, 58, 59, 60,

61, 62, 63].
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Chapter 2

Overview of Protein–Protein

Docking

2.1 Introduction

Practically every process in the living cell requires molecular recognition and forma-

tion of complexes that may be stable or transient assemblies of two or more molecules

with one molecule acting on the other, or may be promoting intra- and inter-cellular

communication, or representing permanent oligomeric ensembles [27]. The rapid ac-

cumulation of data on protein–protein interactions, protein sequences, and tertiary

structures requires the development of advanced computational methods to help in our

understanding of living cells. One of the methods involves the prediction of the protein

complex structure from its components. Typically protein–protein docking methods

are investigated in an attempt to predict the protein complex structures given the pro-

tein structures of components. Over the past 30 years, many docking approaches have

been proposed, ranging from thermodynamic approaches to correlation approaches and

from rigid-body docking to flexible docking [64, 65].

Docking algorithms operate on the atomic coordinates of two individual proteins usu-

ally considered as rigid bodies and generate a large number of candidate association

models between them. These candidates are then ranked by using various scoring func-

tions, used independently or in combination. The scoring functions generally include

geometric and chemical complementarities measures, electrostatics, hydrogen-bonding

interactions, van der Waals interactions, and some empirical potential functions. A

number of algorithms and many different scoring functions have been developed in

the last 20 years, as recently reviewed by Eisenstein, et al. (2004) [27], Ritchie, et

13
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al. (2008) [66], Janin, et al. (2010) [67], Vakser, et al. (2013) [68] and Vajda, et al.

(2013) [65], and the field has become extremely active.

2.2 Rigid-Body Protein–Protein Docking Ap-

proach

In the rigid-body docking approaches, the proteins are considered rigid and this

inflexibility is taken into account. Here, an overview is provided to describe the different

steps involved in rigid-body protein–protein docking:

1. First, we start with the simulated 3D structures of the two unbound component

proteins. Assuming that the formed complex has limited conformational changes,

the two component proteins are regarded as rigid bodies.

2. A 3D rotational and 3D translational search (6D search) is performed over all

possible associations because in most cases of unbound-unbound complexes there

is no biological information regarding what parts of the proteins will interact.

This search will sample the space of all possible associations and consequently

there will be a lower limit applied to the difference in conformations between

two docked predicted complexes that determine the global solution of the search

procedure.

3. A large number of different complexes (decoys) are generated after the global

search procedure. Then a function is developed to score the quality of these

decoys. At this stage, geometric and electrostatic complementarity are often

used because it is very fast to compute. Ideally, the docking algorithm will then

identify several complexes that are close to the native complex based on these

complexes having the best scores.

4. Then a reranking of the resultant complexes may be undertaken possibly using

computationally intensive calculations. Finally, conformational flexibility may be

introduced into the algorithm to refine the few remaining decoys when there are

only a limited number of complexes to consider.
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Figure 2.1: Typical FFT-based protein–protein docking procedure using the
Katchalski-Katzir algorithm.

2.3 FFT-based Rigid-Body Protein–Protein Dock-

ing

In the first step of many docking methods, an attempt is made to represent the

protein structures in an efficient manner. One of the major methods is the Katchalski-

Katzir algorithm by Katchalski-Katzir, et al. (1992) [26], that applies a 3D grid rep-

resentation and FFT correlation approach. Fig. 2.1 illustrates the procedure followed

by the Katchalski-Katzir algorithm for protein–protein docking. In this method, the

protein structure is projected onto a 3D grid. The pseudo interaction energy score

(called the docking score) S between two proteins (here we call them the “receptor”

and “ligand”, apart from the typical biological definition, to indicate two docked pro-

teins) is calculated by discrete Fourier transform (DFT) and inverse discrete Fourier

transform (IDFT) using the correlation of two discrete functions, as follows:

S(α, β, γ) =
N∑
l=1

N∑
m=1

N∑
n=1

R(l,m, n)L(l + α,m+ β, n+ γ) (2.1)

= IDFT[DFT[R(l,m, n)]∗DFT[L(l,m, n)]] (2.2)
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where R and L are the discrete score function of the Receptor (R) and Ligand (L)

proteins, respectively, (l,m, n) is a coordinate in the 3D grid space, and (α, β, γ) is the

parallel translation vector of the ligand protein. The asterisk operator ∗ indicates the

complex conjugate of a complex number. DFT and IDFT are defined below:

DFT[R(l,m, n)] =
N∑
l=1

N∑
m=1

N∑
n=1

R(l,m, n)exp

(
−2πi(lo+mp+ nq)

N

)
(2.3)

= R(o, p, q),

IDFT[R(o, p, q)] = 1

N3

N∑
o=1

N∑
p=1

N∑
q=1

R(o, p, q)exp
(
2πi(lo+mp+ nq)

N

)
(2.4)

= R(l,m, n)

Proof Apply the equation for DFT to both sides of eq. (2.1), then

DFT[S(α, β, γ)]

= DFT

[
N∑
l=1

N∑
m=1

N∑
n=1

R(l,m, n)L(l + α,m+ β, n+ γ)

]

=
N∑

α=1

N∑
β=1

N∑
γ=1

(
N∑
l=1

N∑
m=1

N∑
n=1

R(l,m, n)L(l + α,m+ β, n+ γ)

)
exp

(
−2πi(αo+ βp+ γq)

N

)

=

N∑
l=1

N∑
m=1

N∑
n=1

R(l,m, n)

(
N∑

α=1

N∑
β=1

N∑
γ=1

L(l + α,m+ β, n+ γ)×

exp

(
−2πi{(l + α)o+ (m+ β)p+ (n+ γ)q}

N

)
exp

(
−2πi{(−l)o+ (−m)p+ (−n)q}

N

))

=

N∑
l=1

N∑
m=1

N∑
n=1

R(l,m, n)exp

(
−2π(−i){lo+mp+ nq}

N

)
×

N∑
α=1

N∑
β=1

N∑
γ=1

L(l + α,m+ β, n+ γ)exp

(
−2πi{(l + α)o+ (m+ β)p+ (n+ γ)q}

N

)

=
N∑
l=1

N∑
m=1

N∑
n=1

R(l,m, n)exp

(
−2πi{lo+mp+ nq}

N

)∗

DFT[L(l,m, n)]

= DFT[R(l,m, n)]∗DFT[L(l,m, n)]

2

To find the best docking poses, possible ligand orientations are exhaustively examined

at nθ rotation angles for a given stepsize θ. For each rotation, the ligand protein is

translated into N×N×N patterns in the N3 grid space (where N = |N| is the grid size
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in each dimension). The decoy that yields the highest value of S for each rotation is

recorded. In this manner, a total of nθ×N3 docking poses are evaluated for one protein

pair. To directly execute the simple convolution sums in eq. (2.1), O(N6) calculations

are required; however, this is reduced to O(N3 logN) using the FFT in eq. (2.2).

2.4 Scoring Function R(l,m,n) and L(l,m,n)

The Katchalski-Katzir algorithm has been further developed by several authors ([28,

29, 30, 32, 33, 69, 70, 71, 72, 73]) especially in terms of scoring functions.

2.4.1 Shape complementarity function

Katchalski-Katzir score

The original scoring function by Katchalski-Katzir, et al. [26] is based on the shape

complementarity. The scoring functions are given below.

RKK(l,m, n) =


1 (surface voxel)

ρ (interior voxel)

0 (otherwise)

(2.5)

LKK(l,m, n) =


1 (surface voxel)

δ (interior voxel)

0 (otherwise)

(2.6)

SKK(α, β, γ) =
N∑
l=1

N∑
m=1

N∑
n=1

R(l,m, n)L(l + α,m+ β, n+ γ) (2.7)

Thus, for the receptor protein, surface grid points are given the value 1, those in the

interior are given the value ρ (usually −15), and grid points outside the protein are

given a value of 0. For the ligand protein, grid points on the surface are given the

value 1, interior grid points are given the value δ (usually 1), and grid points outside

the protein are given a value of 0.

Pairwise Shape Complementarity (PSC)

Chen, et al. proposed another shape complementarity score called PSC [31] that

computes the total number of receptor-ligand atom pairs within a distance cutoff, minus
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a geometric clash penalty. PSC uses a complex function representation as follows:

ℜ[RPSC(l,m, n)] =

# of receptor atoms within (3.6 Å + rvdW) (open space)

0 (otherwise)

(2.8)

ℑ[RPSC(l,m, n)] =


3 (solvent excluding surface of the receptor)

9 (core of receptor)

0 (open space)

(2.9)

ℜ[LPSC(l,m, n)] =

1 (if this grid is the nearest grid of a ligand atom)

0 (otherwise)
(2.10)

ℑ[LPSC(l,m, n)] =


3 (solvent excluding surface of the receptor)

9 (core of ligand)

0 (open space)

(2.11)

SPSC(α, β, γ) = ℜ

[
N∑
l=1

N∑
m=1

N∑
n=1

RPSC(l,m, n)LPSC(l + α,m+ β, n+ γ)

]
(2.12)

where ℜ[·] and ℑ[·] denote the real and imaginary parts of a complex function, and

rvdW represents the van der Waals atomic radius.

In eqs. (2.8)–(2.11), ℑ[R] and ℑ[L] are used to compute the unfavorable component

of PSC. A core–core, surface–core, and surface–surface grid point overlap result in a

penalty of −9 × 9 = −81, −3 × 9 = −27, and −3 × 3 = −9, respectively. Overlaps

involving surface grid points are only moderately penalized, allowing PSC to tolerate

some structural flexibility. ℜ[R] and ℜ[L] are used to compute the favorable compo-

nent of PSC. ℜ[R] denotes the number of receptor atoms within the distance cutoff

(3.6 Å+rvdW) of each grid point in the open space, and ℜ[L] records the nearest grid

point for each ligand atom. The multiplication of these two terms results in the total

number of receptor and ligand atom pairs within the distance cutoff. Eq. (2.12) com-

putes both the favorable and unfavorable components of PSC, and sums them into one

score, with a higher score indicating better shape complementarity. Fig. 2.2 is a 2D

schematic illustration for computing PSC. PSC was used with ZDOCK and obtained

better predictions compared to the Katchalski-Katzir function.
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1+9i 1+9i

1+3i 1+3i
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Figure 2.2: 2D schematic illustration for the discrete functions R and L for PSC.
Protein atoms are indicated using circles, with open circles indicating surface atoms
and shaded circles indicating core atoms. For clarity, we use a grid spacing that equals
atom diameter and grid points whose values are 0 have been omitted from the figure.
The value assigned to each grid point is indicated. Grid points with open circles
are in the solvent excluded surface layer. The block arrow indicates the direction of
translation for the ligand in order to achieve the optimal shape complementarity score.
For each grid point in the open space of R, we record the number of atoms within a
distance cutoff. Small arrows point out the five atoms that are within the distance
cutoff of a grid and thus contribute to its score of 5.
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2.4.2 Electrostatic function

Shape complementarity is not the only factor involved in protein–protein docking.

Electrostatic attraction, particularly the specific charge-charge interactions in the bind-

ing interface, is also important.

For the FFT correlation approach, Gabb, et al. proposed a Coulombic model rep-

resented by a correlation function [28]. The electrostatic calculations proceed in a

manner very similar to those of shape complementarity. Charges are assigned to the

atoms of the receptor protein, and the protein is placed in a grid. An electric field

φ(l,m, n) is assigned to each grid point (excluding those of the protein core) and is

calculated as follows:

φ(l,m, n) =
N∑

l′=1

N∑
m′=1

N∑
n′=1

q(l′,m′, n′)

ε(r)r
(2.13)

ε(r) =


4 (r ≤ 6 Å)

38r − 224 (6 Å < r < 8 Å)

80 (8 Å ≤ r)

(2.14)

r = ∥(l,m, n)− (l′,m′, n′)∥ (2.15)

where q(l′,m′, n′) is the charge at grid point (l′,m′, n′), r is the Euclidean distance

between grid points (l,m, n) and (l′,m′, n′) (a minimum cutoff distance of 2 Å is im-

posed to avoid artificially large values of φ(l,m, n)), and ε(r) is a distance-dependent

dielectric function based on the work by Hingerty, et al. [74]. The electrostatic term

SES is defined as follows:

SES(α, β, γ) =
N∑
l=1

N∑
m=1

N∑
n=1

RES(l,m, n)LES(l + α,m+ β, n+ γ) (2.16)

RES(l,m, n) =

φ(l,m, n) (entire grid excluding core)

0 (core of protein)
(2.17)

LES(l,m, n) = q(l,m, n) (2.18)

where RES and LES represent the electrostatic grid values of receptor/ligand proteins,

determined according to the charge of each grid point q(l,m, n) in which matching

atoms in the residues are assigned Gabb’s potential [28]. FTDock was used with the

Katchalski-Katzir function to analyze shape complementarity, and the electrostatic
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function above was used for protein-pair analysis [28].

ZDOCK also used Gabb’s electrostatic function except that it used the partial

charges in the CHARMM19 potential [75]. In addition, grid points in the core of the

receptor were assigned a value of 0 for the electric potential, to avoid any contributions

from non-physical receptor–core/ligand contacts.

2.4.3 Desolvation free energy function

ZDOCK 2.3

Chen, et al. implemented a desolvation free energy term to ZDOCK by using the

atomic contact energy (ACE) [30]. ACE, developed by Zhang, et al. [76], is defined

as the free energy obtained by replacing an atom-water contact, with an atom-atom

contact. The ACE scores were obtained for all pairs of 18 atom types. The total

desolvation free energy of the complex formation is calculated by summing the ACE

scores of all near atom pairs between the receptor and ligand. Expressed in the form

of correlations, the computation of desolvation score requires 18 FFTs. To speed up

the calculation, ZDOCK version 2.3 used 18 non-pairwise ACE scores, representing

the score between one protein atom of a specific type and another protein atom of any

type. Chen’s desolvation free energy term SDE [30] is defined as follows:

ℜ[RDE(l,m, n)] =


the sum of the ACE scores of all near receptor

atoms that are within (3.6 Å + rvdW) (open space)

0 (otherwise)

(2.19)

ℑ[RDE(l,m, n)] =

1 (if the grid point is the nearest grid point of an atom)

0 (otherwise)

(2.20)

ℜ[LDE(l,m, n)] =


the sum of the ACE scores of all near ligand

atoms that are within (3.6 Å + rvdW) (open space)

0 (otherwise)

(2.21)
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ℑ[LDE(l,m, n)] =

1 (if the grid point is the nearest grid point of an atom)

0 (otherwise)

(2.22)

SDE(α, β, γ) =
1

2
ℑ

[
N∑
l=1

N∑
m=1

N∑
n=1

RDE(l,m, n)LDE(l + α,m+ β, n+ γ)

]
(2.23)

ZDOCK 3.0

Mintseris, et al. introduced another pair-wise statistical potential called IFACE

suitable for docking and showed that this potential could be incorporated into ZDOCK

(version 3.0) [33].

In ZDOCK 3.0, Mintseris, et al. defined 6 discrete functions for each atom of

type i (= 1, 3, 5, 7, 9, 11) in a ligand:

ℜ[LIFACE:i(l,m, n)] =

1 (if grid cell is occupied by a ligand atom of type i)

0 (otherwise)

(2.24)

ℑ[LIFACE:i(l,m, n)] =

1 (if grid cell is occupied by a ligand atom of type (i+ 1))

0 (otherwise)

(2.25)

and 6 discrete functions for each possible atom type i in contact with a receptor atom

of type j:

ℜ[RIFACE:i(l,m, n)] =


∑

eIFACE:(i+1),j (Neighbor atoms within 6 Å)

0 (Non-neighbor atoms)
(2.26)

ℑ[RIFACE:i(l,m, n)] =


∑

eIFACE:i,j (Neighbor atoms within 6 Å)

0 (Non-neighbor atoms)
(2.27)

The sum of the resulting FFT correlations on a grid will give the total desolvation
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energy summed over all atom types

SIFACE(α, β, γ) = ℑ

[
11∑

i=1,3,5,...

{
N∑
l=1

N∑
m=1

N∑
n=1

RIFACE:i(l,m, n)LIFACE:i(l + α,m+ β, n+ γ)

}]
(2.28)

=
11∑

i=1,3,5,...

N∑
l=1

N∑
m=1

N∑
n=1

{ℜ[RIFACE:i(l,m, n)]ℑ[LIFACE:i(l + α,m+ β, n+ γ)]

+ℑ[RIFACE:i(l,m, n)]ℜ[LIFACE:i(l + α,m+ β, n+ γ)]} (2.29)

where the imaginary part of the complex product evaluated as a result of the correlation

accomplishes the summation of the energy components over atoms in contact with each

other. In total, ZDOCK 3.0 used 8 FFT correlations (a PSC term (eq. (2.12)), an

Electrostatics term (eq. (2.16)) and six IFACE terms (eq. (2.29))).

2.5 Refinement and Rescoring Tools

In protein–protein docking prediction, there are two necessary sequential stages con-

ducted because of the complexity of the problem. The initial stage is rigid-body

protein–protein docking analysis generating many predictions (10,000 or more), and

the second stage is the refinement and rescoring stage that performs any combination

of detailed scoring, energy minimization, side-chain or backbone searches, clustering,

etc. on these predictions. In this section, we introduce some refinement and rescoring

tools used in recent CAPRI assessments.

2.5.1 RDOCK

The refinement program RDOCK was developed by Li, et al. [77]. It uses

CHARMM19 to perform energy minimization on the top ZDOCK predictions (the

top 2,000 are recommended), and reranks these predictions using desolvation and elec-

trostatics. However, there are some limitations to RDOCK. The energy minimization

step takes roughly 1 min per test case, and therefore RDOCK is only feasible for a

limited subset of ZDOCK predictions.
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2.5.2 FireDock

FireDock is another refinement program developed by Andrusier, et al. [44]. Fire-

Dock optimizes the binding of each candidate by allowing flexibility in the side-chains

and adjustments of the relative orientation of the molecules. Most of the interface

residues that are important to the binding recognition, remain in the near-unbound

conformations upon complexation. Andrusier, et al. used this observation and re-

stricted the side-chain flexibility to include only the clashing interface residues. In

addition, the atomic radii of the partners are smoothed in the rigid-body optimiza-

tion and scoring stages. This coarse refinement approach is the key to the efficiency

of FireDock. Scoring of the refined candidates is based on softened van der Waals

interactions, ACE, electrostatic, and additional binding free energy estimations.

2.5.3 FiberDock

FireDock models only side-chain movements and keeps the backbone rigid. Mashiach,

et al. proposed another refinement program, called FiberDock, that allows both back-

bone and side-chain flexibility [45]. The side-chain flexibility is modeled by a rotamer

library, and the backbone flexibility is modeled by an a priori unlimited number of nor-

mal modes. Their comparison of FireDock and FiberDock showed that the modeling of

backbone flexibility in the refinement process is often critical for creating near-native

models with low energy values.

2.5.4 ZRANK

ZRANK is a rescoring tool developed by Pierce, et al. [78]. ZRANK quickly and

accurately reranks the rigid-body docking results. It uses a more detailed potential

than ZDOCK, but is fast enough to quickly process and rerank over 10,000 predictions

produced by the ZDOCK sampling search. It significantly improves the accuracy of

ZDOCK, and thus it is able to rerank predictions on its own, or may be used as a

preprocessing step for refinement programs such as RDOCK, FireDock, and FiberDock.
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2.6 CAPRI: Critical Assessment of PRedicted In-

teractions

CAPRI is a community-wide experiment to assess the capacity of molecular inter-

action prediction methods applied mainly to protein–protein docking [50]. About 50

groups participated in rounds 1–28 and submitted blind structure predictions based

on the known structure of the component proteins. The predictions were compared

with the unpublished X-ray structures of the complexes. CAPRI has already proven

itself as a powerful driver for the community of computational biologists who develop

docking algorithms. Each participating group is allowed to submit 10 models per

target, and these models are compared to newly obtained X-ray structures of the

complexes that crystallographers make available for the evaluation. The CAPRI ex-

periments are hosted by the European Bioinformatics Institute (EBI). The website is

http://capri.ebi.ac.uk/. In each round, one or more targets are presented and par-

ticipants have to submit their predictions before a given deadline. After the submission

deadline, the results are published on the CAPRI website and classified into the follow-

ing: “Incorrect”, “Acceptable”, “Medium”, or “High quality”, based on several criteria

such as fraction of native residue-residue contact and the root mean square deviation

(RMSD) values of the ligands after superimposing the receptors of the prediction and

the native complex structures. Until December 2013, there have been about 70 tar-

gets evaluated by CAPRI. Some of these targets were used as a benchmark data set,

complementary to the ZLAB docking benchmark dataset [79, 80, 81, 82].

2.7 Summary

In this chapter, we introduced typical rigid-body protein–protein docking methods

that primarily use FFT correlations with the Katchalski-Katzir algorithm. We also

introduced basic discussions of the refinement and rescoring tools generally used for

docking protocols.





Chapter 3

Development of a Rapid

Protein–Protein Docking Method

3.1 Introduction

To realize the network level PPI predictions by fully utilizing protein tertiary struc-

tures required to sample some millions of protein dockings, a rapid protein–protein

docking method is needed. The one of the key of calculation speedup is improvement

of score functions to reduce the number of FFT correlations. In this chapter, we intro-

duce a novel shape complementarity score function and a novel desolvation free energy

score function. These score functions can calculate three effects, shape complementar-

ity, electrostatics interaction and desolvation free energy, at the same time with only

one FFT correlation function.

3.2 Materials and Methods

We propose a novel shape complementarity function with only real number represen-

tation (rPSC) and a novel desolvation free energy function by using non-pairwise ACE.

In this section, we describe the MEGADOCK scoring functions: rPSC, electrostatics

and desolvation free energy.

3.2.1 real Pairwise Shape Complementarity (rPSC)

Each receptor and ligand proteins are first allocated on a 3D grid space N3 with grid

point spacing of 1.2 Å. The scores are then assigned to each grid point (l,m, n) ∈ N3

27
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according to the location in a protein, such as the surface or core.

We introduce the following novel scoring function called real Pairwise Shape Com-

plementarity (rPSC) for the shape complementarity term RrPSC and LrPSC:

RrPSC(l,m, n) =

# of receptor atoms within (3.6 Å + rvdW) (open space)

−45 (inside of receptor)

(3.1)

LrPSC(l,m, n) =

1 (inside of ligand)

0 (otherwise)
(3.2)

SrPSC(α, β, γ) =
N∑
l=1

N∑
m=1

N∑
n=1

RrPSC(l,m, n)LrPSC(l + α,m+ β, n+ γ) (3.3)

where rvdW represents the van der Waals atomic radius of receptor atoms in the grid

point (l,m, n), and (α, β, γ) is a vector of the ligand translation. The parameter of

these functions are optimized using the structural data of 176 complexes from a general

docking benchmark dataset (protein–protein docking benchmark 4.0 [82]). Fig. 3.1 is

a 2D schematic illustration for computing rPSC.

RrPSC denotes the number of receptor atoms within the distance cutoff (3.6 Å+rvdW)

of each grid point in the open space. The multiplication of RrPSC and LrPSC results in

the total number of receptor/ligand atom pairs within the distance cutoff. Compared

to a similar score function, PSC by ZDOCK, the rPSC function uses only real number

representation for shape complementarity. Therefore, we can place a physicochemical

parameter in the imaginary part (see next section). As a result, it is possible to calculate

a total energy score with only one complex number for each grid point. By decreasing

the number of required DFT/IFT operations, the docking calculation is expected to

be faster than other tools like ZDOCK.

3.2.2 Combination of rPSC and electrostatics

In addition to shape complementarity scores, we used the electrostatic interactions

of each amino acid as a physicochemical score. We used Coulombic model by Gabb, et

al. [28] and the CAHRMM19 potential [75] like ZDOCK.

The electric field φ(l,m, n) is calculated by eq. (2.13) and the electrostatic terms

RES and RES are decided by eq. (2.17) and eq. (2.18) respectively. The electrostatics

score SES is represented by eq. (2.16).
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(l,m,n) Ligand rPSC L
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1

11

Figure 3.1: 2D schematic illustration for the discrete functions R and L for real Pairwise
Shape Complementarity (rPSC). Protein atoms are indicated using circles, with open
circles indicating surface atoms and shaded circles indicating core atoms. For clarity,
we use a grid spacing that equals atom diameter and grid points whose values are 0 have
been omitted from the figure. The value assigned to each grid point is indicated. Grid
points with open circles are in the solvent excluded surface layer. The block arrow
indicates the direction of translation for the ligand in order to achieve the optimal
shape complementarity score. For each grid point in the open space of R, we record
the number of atoms within a distance cutoff. Small arrows point out the five atoms
that are within the distance cutoff of a grid and thus contribute to its score of 5.
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Considering these two terms, the combination score S is represented as follows:

R(l,m, n) = RrPSC(l,m, n) + iRES(l,m, n) (3.4)

L(l,m, n) = LrPSC(l,m, n) + iwLES(l,m, n) (3.5)

S(α, β, γ) = ℜ

[
N∑
l=1

N∑
m=1

N∑
n=1

R(l,m, n)L(l + α,m+ β, n+ γ)

]
(3.6)

=
N∑
l=1

N∑
m=1

N∑
n=1

{RrPSC(l,m, n)LrPSC(l + α,m+ β, n+ γ)

−wRES(l,m, n)LES(l + α,m+ β, n+ γ)} (3.7)

= SrPSC(α, β, γ)− wSES(α, β, γ) (3.8)

where, w is the weight parameter which is set as w = 2,800, a value obtained by

optimization by conducting pre-experiments using protein–protein docking benchmark

4.0 dataset.

3.2.3 Combination of rPSC, electrostatics and desolvation

free energy

To improve performance as docking accuracy and calculation speed of MEGADOCK,

we should introduce a hydrophobic interaction effect in our scoring model. However,

using conventional score model used ZDOCK increase in number of FFT correlations.

Therefore we need a new score model for varied applications.

In our proposed method, we used a non-pairwise-type atomic contact energy (ACE)

score [76] to incorporate a desolvation free energy effect. For the current study, we

introduce a simple model that considers only the receptor protein because, when both

the receptor and ligand are taken into consideration, an increase in the number of

correlation functions is unavoidable.

We modify the receptor rPSC function RrPSC in eq. (3.1) in order to introduce the

ACE score. The new receptor function RrPSC+RDE is defined as follows:

RrPSC+RDE(l,m, n) = RrPSC(l,m, n) + wDERRDE(l,m, n) (3.9)
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RRDE(l,m, n) =


the sum of the ACE scores of all near

receptor atoms within (3.6 Å + rvdW) (open space)

0 (inside of receptor)

(3.10)

where wDE is the weight parameter of SRDE. wDE is set as wDE = 0.8, a value ob-

tained by optimization by conducting pre-experiments using protein–protein docking

benchmark 4.0 dataset. The ligand rPSC function is not modified. The desolvation

free energy term SRDE is defined as follows:

SRDE(α, β, γ) =
N∑
l=1

N∑
m=1

N∑
n=1

RRDE(l,m, n)LrPSC(l + α,m+ β, n+ γ) (3.11)

Fig. 3.2 shows a pattern diagram of the proposed model. We use the ACE values given

in Table 3.1.

Finally, the combination score S with rPSC, electrostatics and our desolvation free

energy is represented as follows:

R(l,m, n) = RrPSC+RDE(l,m, n) + iRES(l,m, n) (3.12)

= RrPSC(l,m, n) + wDERRDE(l,m, n) + iRES(l,m, n) (3.13)

L(l,m, n) = LrPSC(l,m, n) + iwESLES(l,m, n) (3.14)

S(α, β, γ) = ℜ

[
N∑
l=1

N∑
m=1

N∑
n=1

R(l,m, n)L(l + α,m+ β, n+ γ)

]
(3.15)

=
N∑
l=1

N∑
m=1

N∑
n=1

{RrPSC(l,m, n)LrPSC(l + α,m+ β, n+ γ)

+ wDERRDE(l,m, n)LrPSC(l + α,m+ β, n+ γ)

−wESRES(l,m, n)LES(l + α,m+ β, n+ γ)} (3.16)

= SrPSC(α, β, γ) + wDESRDE(α, β, γ)− wESSES(α, β, γ) (3.17)

This score model attains a value of RrPSC + wDERRDE when the open space near

the receptor surface is superposed on the ligand surface and core. ZDOCK 2.3 [32]

uses three correlation functions, and ZDOCK 3.0 [33] uses eight correlation functions

to consider three effects—shape complementarity, electrostatics, and desolvation free

energy—our score model can calculate docking scores under consideration of three

effects with only one FFT correlation, while maintaining an advantage in terms of



32 3. Rapid Protein–Protein Docking Method

2+H -45 -45 -45 -45 -45 2+H

3+H -45 -45 -45 -45 -45 2+H

3+H -45 -45 -45 5+H 2+H

3+H -45 -45 -45 5+H 2+H

3+H -45 -45 -45 -45 -45 2+H

2+H -45 -45 -45 -45 -45 2+H

2+H 3+H 3+H 3+H 2+H

2+H 3+H 3+H 3+H 2+H

1 1

1 1

1 1

1 1

1 1

1 1

1

1
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Figure 3.2: Proposed scoring model RrPSC+RDE(l,m, n) and LrPSC(l,m, n). The model
consists of 3D grid, but here we show only two dimensions for simplicity. For clarity,
grid points with a value of 0 have been omitted. Small arrows indicate the five atoms
that are within the cutoff distance of a grid, and thus contribute to its score of 5 +H,
where H means wDERRDE(l,m, n).
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Table 3.1: Non-pairwise ACE scores. The atom types are defined in below table.
atom type N Cα C O GCα Cβ KNζ KCδ DOδ

ACE score −0.495 −0.553 −0.464 −0.079 0.008 −0.353 1.334 1.046 0.933

atom type RNη NNδ RNε SOγ HNε YCζ FCζ LCδ CSγ

ACE score 0.726 0.693 0.606 0.232 0.061 −0.289 −0.432 −0.987 −1.827

atom amino atom atom amino atom atom amino atom
type acid type acid type acid

N BB N Arg Cζ Arg Cγ

Cα BB Cα RNη Arg Nη1 Gln Cγ

C BB C Arg Nη2 Glu Cγ

O BB O Asn Cγ Ile Cγ1

GCα Gly Cα Asn Oδ1 Leu Cγ

Ala Cβ NNδ Asn Nδ2 Lys Cγ

Arg Cβ Gln Cδ Met Cγ

Asn Cβ Gln Oε1 Met Sδ

Asp Cβ Gln Nε2 Phe Cγ

Cyc Cβ RNε Arg Cδ Phe Cδ1

Gln Cβ Arg Nε Phe Cδ2

Glu Cβ Ser Cβ Phe Cε1

His Cβ SOγ Ser Cγ FCζ Phe Cε2

Ile Cβ Thr Cγ1 Phe Cζ

Cβ Leu Cβ Tyr Oη Thr Cγ2

Lys Cβ His Cγ Trp Cγ

Met Cβ His Nδ1 Trp Cδ1

Phe Cβ HNε His Cδ2 Trp Cδ2

Pro Cβ His Cε1 Trp Cε2

Pro Cγ His Nε2 Trp Cε3

Pro Cδ Trp Nε1 Trp Cζ2

Thr Cβ Tyr Cε1 Trp Cζ3

Trp Cβ YCζ Tyr Cε2 Trp Cη2

Tyr Cβ Tyr Cζ Tyr Cγ

Val Cβ Tyr Cδ1

KNζ Lys Cε Tyr Cδ2

Lys Nζ Ile Cγ2

KCδ Lys Cδ Ile Cδ

Asp Cγ Leu Cδ1

Asp Oδ1 LCδ Leu Cδ2

DOδ Asp Oδ2 Met Cε

Glu Cδ Val Cγ1

Glu Oε1 Val Cγ2

Glu Oε2 CSγ Cyc Sγ

Note: Atom names are taken from the typical PDB files. For convenience, a side-chain atom

type (except for CB) is assigned the name of one of the atoms of that type prefixed by the

single-letter amino acid code, e.g. KNζ=Nζ of Lys. The amino acid ‘BB’ denotes backbone

atoms.
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calculation speed.

3.2.4 Other settings

Sampling number of decoys per rotation

Conventional software typically records the highest-scoring decoy obtained by all the

translation patterns for each ligand rotation because it is well known that analyses of

more than one decoy per rotation do not contribute significantly to an improvement of

docking pose predictions. In contrast, we assumed that in the PPI screening problem,

the distributions of high-scoring decoys provided important information for the analy-

ses. Hence, MEGADOCK allows the user to input the number of decoys t that should

be recorded per ligand rotation in order to obtain a larger number of high-scoring

decoys.

FFT grid size

An FFT-based docking tool firstly reads the atom coordinates of a receptor and a

ligand, and determines the grid size fitted for the receptor and ligand. The FFT size N

is proportional to the grid size, which was automatically calculated from the single grid

unit size and the size of proteins. FFTW algorithms [83], which we used in MEGA-

DOCK, are optimized for sizes that represented as a multiple of {2, 3, 5, 7, 11, 13}.
Thus, our algorithm to decide the grid size searches the smallest composite number

consisted of those prime factors.

3.2.5 Dataset

For the evaluation of our new scoring function, the protein complex structures used

in this study were retrieved from a standard protein–protein docking benchmark set

(protein–protein docking benchmark 4.0 [82]). This benchmark set comprises 176

known complexes and included both a “bound” and “unbound” set. The “bound”

set is composed of protein structures prepared by separating individual proteins from

the crystal structures of 176 protein complexes. The “unbound” data means that each

protein structure is taken from the isolated form of crystals rather than complex form.

The “unbound” dataset includes protein structural data corresponding to the same set

of proteins in the “bound” dataset. Structural differences in bound and unbound form

in RMSD are shown in the reference [82].
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Figure 3.3: FFT size of various proteins in protein–protein docking benchmark 4.0 (176
protein complexes, 352 structures).

Distribution of size of FFT for protein in this dataset is shown in Fig. 3.3. Time

consumed for FFT is expected to be longer with larger size of FFT.
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3.2.6 Evaluation of the MEGADOCK approximation capabil-

ity to the ZDOCK

To confirm the approximation capability of MEGADOCK score function, we assessed

the correlation between the MEGADOCK score functions and ZDOCK ones:

(a) MEGADOCK rPSC vs. ZDOCK PSC (implemented in MEGADOCK) [30],

(b) MEGADOCK rPSC+ES+RDE vs. ZDOCK PSC+ES+DE (ZDOCK ver.

2.3) [32],

(c) MEGADOCK rPSC+ES+RDE vs. ZDOCK PSC+ES+IFACE (ZDOCK ver.

3.0) [33].

For comparison, we set parameters of nθ = 3,600 decoys per case and θ = 15◦ for the

ligand rotation step. We calculated Spearman’s rank correlation coefficient ρ and P -

value for t-test between the 3,600 sequence values of MEGADOCK and ZDOCK. The

way of construction of FFT grids on ZDOCK and MEGADOCK is the same. However,

it is not possible to confirm that the grid made by ZDOCK and MEGADOCK is the

same because ZDOCK is distributed in binary form and it does not support output

of FFT grid. Thus, we allow MEGADOCK the difference of distance of 1.2 Å from

ZDOCK predictions ((b), (c)). We calculated the MEGADOCK score on 7 position

of (l ± 1,m, n), (l,m ± 1, n), (l,m, n ± 1), (l,m, n) based on the predicted position

(l,m, n) by ZDOCK and the maximum value of these position was considered as the

MEGADOCK score on (l,m, n). Fig. 3.4 shows this comparison method.

3.2.7 Evaluation of docking performance

To evaluate the docking pose prediction performance, we conducted a re-docking

and unbound docking experiment using the protein–protein docking benchmark 4.0

dataset. In order to determine the accuracy of the docking predictions, we used the

root mean square deviation (RMSD) of the ligand (L-RMSD), which is the RMSD of

the predicted ligand position and that of the crystal complex structure calculated for all

the atoms when the receptor positions are superimposed. The RMSDs of the unbound

structures were calculated for residues that were aligned by pairwise alignment of the

amino acid sequences between the bound and unbound structures. We defined a “near-

native decoy” as that for which L-RMSD was less than or equal to 5 Å. We compared

the performance of the following docking methods:
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receptor
protein

ligand
protein

ZDOCK

ZDOCK output file1    1.047198   1.433411   -1.035986      5    9 86      20.3402    0.261799   0.961715    0.014085     27  106 105   17.9403    1.832596   1.504028    0.636812     12   99 86      17.7604    1.832596   1.510910   -0.740472     94    19 90      17.6805   -2.094395   1.374601  -2.456031 106     90 21      17.1406   -1.308997   0.733948  3.021411 102     89 18      16.9007   -2.356194   0.618092  2.539118 23    93 99      16.6001.308997   2.719179   -1.780644     5     76     96  9.040
rank ligand rotation angles (α, β, γ) docking score

…3600
MEGADOCK1    1.047198   1.433411   -1.035986      5    9 86      20.3402    0.261799   0.961715    0.014085     27  106 105   17.9403    1.832596   1.504028    0.636812     12   99 86      17.7604    1.832596   1.510910   -0.740472     94    19 90      17.6805   -2.094395   1.374601  -2.456031 106     90 21      17.1406   -1.308997   0.733948  3.021411 102     89 18      16.9007   -2.356194   0.618092  2.539118 23    93 99      16.6001.308997   2.719179   -1.780644     5     76     96  9.040

rank ligand rotation angles (α, β, γ) docking score
…3600

MEGADOCK score MEGADOCK rank1623.27            17543170.00              681447.49            20472068.61             972781.89            29652112.10             9041810.26            14091941.62            1179Spearman’s ρ = 0.425
P-value = 5.77×10-158
Figure 3.4: The method of Spearman’s correlation coefficient calculations.

• MEGADOCK rPSC

• MEGADOCK rPSC+ES

• MEGADOCK rPSC+ES+RDE

• ZDOCK PSC (ZDOCK ver. 2.1) [31]

• ZDOCK PSC+ES+DE (ZDOCK ver. 2.3) [32]

• ZDOCK PSC+ES+IFACE (ZDOCK ver. 3.0) [33]

For comparison with ZDOCK, we set parameters of nθ = 3,600 decoys per case and

θ = 15◦ for the ligand rotation step.

We compared the following three values to determine the docking performance pro-

duce by the methods listed above.

• #NND: The number of near-native decoys (L-RMSD< 5Å) in 3,600 highest

scoring decoys.

• Best Rank: The rank of the first near-native decoy.

• RMSDbest : The L-RMSD of the ‘Best Rank’ decoy.

In addition, we compared the following widely used value [30, 33, 78, 84] to determine

the overall docking performance:
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• Success Rate: The percentage of cases with near-native decoys for a given

number of top-ranked predictions per test case.

3.3 Results and Discussion

3.3.1 rPSC approximation capability to PSC

Table 3.2 shows the average of Spearman’s correlation coefficient between rPSC and

PSC on 176 bound and unbound cases. The result shows a strong correlation between

rPSC and PSC and rPSC has some approximation capability to PSC.

3.3.2 MEGADOCK approximation capability to ZDOCK

2.3/3.0

Table 3.3 and Table 3.4 show the average of Spearman’s correlation coefficient be-

tween MEGADOCK and ZDOCK on 176 bound and unbound cases. The result shows a

weak correlation between MEGADOCK and ZDOCK 2.3/3.0. A number of reasons can

be given for these results. The one of the reasons is the difference of implementations

and hidden internal parameters, and another one is the difference of the desolvation

free energy functions. Because our desolvation free energy term RDE is simplified for

faster calculation, this weak correlation is thought as the inevitable issue.

3.3.3 Docking prediction accuracy

Table 3.5 and Table 3.6 show the results of all docking predictions both bound and

unbound set.

As a result of the incorporation of the rPSC score for the shape complementarity

representation, we achieved almost same #NND and smaller Best Rank values in many

complexes using MEGADOCK than in the case of PSC representations (ZDOCK 2.1).

Moreover, by adding the electrostatic force and desolvation free energy to the score

function with rPSC, we achieved better Best Rank and #NND values. Here, we show

the sum of #NND values and the number of cases with at least one near-native de-

coy in the top 100 scored decoys in Table 3.7. MEGADOCK rPSC+ES+RDE gave

#NND values of 661 in the bound set and 155 in the unbound set. Both values were

higher than those obtained with rPSC (545 in the bound set and 103 in the unbound

set) and rPSC+ES (593 in the bound set and 116 in the unbound set). In addition,
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Table 3.2: The Spearman’s correlation coefficient between rPSC and PSC. ρmean is
the average value of coefficients of 176 complexes and s.d. is the standard deviation.
P -value is calculated from t-distribution with (3,600−2) degrees of freedom and ρmean .

bound unbound
Spearman’s ρmean 0.450 0.438

s.d. 0.028 0.065
P -value of ρmean 3.082× 10−179 5.385× 10−169

Table 3.3: The Spearman’s correlation coefficient between MEGADOCK
rPSC+ES+RDE and ZDOCK 2.3 (PSC+ES+DE). ρmean is the average value of coeffi-
cients of 176 complexes and s.d. is the standard deviation. P -value is calculated from
t-distribution with (3,600− 2) degrees of freedom and ρmean .

bound unbound
Spearman’s ρmean 0.242 0.239

s.d. 0.058 0.060
P -value of ρmean 4.291× 10−49 5.318× 10−48

Table 3.4: The Spearman’s correlation coefficient between MEGADOCK
rPSC+ES+RDE and ZDOCK 3.0 (PSC+ES+IFACE). ρmean is the average value of
coefficients of 176 complexes and s.d. is the standard deviation. P -value is calculated
from t-distribution with (3,600− 2) degrees of freedom and ρmean .

bound unbound
Spearman’s ρmean 0.166 0.163

s.d. 0.080 0.077
P -value of ρmean 9.059× 10−24 6.051× 10−23
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MEGADOCK rPSC+ES+RDE achieved the same level of accuracy of ZDOCK 2.3

(Table 3.7).

By looking at the Best Rank values, we observed that MEGADOCK

rPSC+ES+RDE successfully predicted at least one near-native decoy for 165 protein

complexes in the bound set and 30 complexes in the unbound set in the top 100 scored

decoys. This result gave higher values than those obtained by rPSC (149 in the bound

set and 22 in the unbound set) and rPSC+ES (156 in the bound set and 22 in the

unbound set). With MEGADOCK rPSC+ES+RDE, we obtained near native decoys

that were not achieved with only shape complementarity scoring (MEGADOCK rPSC

and ZDOCK PSC), such as in 1E6J (bound) or 1XD3 (unbound).

Fig. 3.5 shows the docking success rate. The vertical axis shows the ratio of the

number of successfully predicted protein complexes; in total 176 benchmark 4.0 pairs.

Here, we define the docking as successful when at least one near-native decoy was found

in the top n scoring decoys. The number of decoys n is shown along the horizontal axis.

A docking method was working well when the area is larger in the left part of the graph.

While MEGADOCK was less successful when compared to ZDOCK 3.0, incorporation

of the electrostatic term and desolvation free energy term clearly improved the docking

success rate. We think that SrPSC and SRDE require further tuning using more complex

structures in the PDB.

Fig. 3.6 shows examples of docking predictions by MEGADOCK. The proteins used

as the receptor are shown by the surface representations, whereas ligands are shown

by ribbons. The ligands colored red are placed in the predicted coordinates whereas

those colored green are positioned in the original crystal structures. The structure

on the left of Fig. 3.6 corresponds to the PDB data 1CGI, for which we obtained a

ligand RMSD value of 1.02 Åfor the highest-ranked decoy. The structure on the right

of Fig. 3.6 shows the highest-ranked decoy generated by the re-docking of 2BTF (the

ligand RMSD value = 1.33 Å).

3.3.4 Calculation time

Table 3.8 shows the total time consumed for docking the benchmark 4.0 dataset. All

the calculations were conducted on the TSUBAME 2.0 supercomputing system, Tokyo

Institute of Technology, Japan, which consisted of two Intel Xeon processor 2.93 GHz

(6 cores × 2) and 54 GB RAM, operational nodes connected via an InfiniBand and

Gigabit Ethernet. An average of 11.93 min was required for each docking calculation

with rPSC, electrostatics and desolvation free energy using one CPU core.
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Table 3.5: Docking prediction performance of MEGADOCK and ZDOCK for the bound
docking test cases in protein–protein docking benchmark 4.0. #NND denotes the
number of near-native decoy in the top 3,600 predictions, Best Rank is the rank of first
near-native decoy, and RMSD is the L-RMSD of first near-native decoy (RMSDbest).

rPSC rPSC+ES rPSC+ES+RDE ZDOCK 2.1 (PSC) ZDOCK 2.3 (PSC+ES+DE) ZDOCK 3.0 (PSC+ES+IFACE)
PDB #NND Best RMSD #NND Best RMSD #NND Best RMSD #NND Best RMSD #NND Best RMSD #NND Best RMSD
ID Rank Rank Rank Rank Rank Rank

1A2K 1 5 1.75 2 3 1.75 3 2 1.75 2 11 2.30 1 2 2.30 3 1 2.30
1ACB 7 1 1.25 6 5 1.25 9 1 1.25 6 1 1.68 9 1 1.68 11 4 4.52
1AHW 1 1 1.92 1 1 1.92 1 1 1.92 1 6 1.89 1 2 1.99 1 3 1.99
1AK4 1 300 2.31 1 570 2.31 1 149 2.31 1 2274 1.57 1 307 1.57 2 56 1.57
1AKJ 1 9 1.22 1 1 1.22 1 1 1.22 2 1397 1.96 2 13 2.12 2 4 1.48
1ATN 2 21 2.13 2 10 2.13 2 1 2.13 2 66 1.59 2 1 1.59 2 1 1.59
1AVX 3 1 2.13 3 1 1.57 4 2 1.87 3 3 2.48 4 2 2.48 4 2 2.47
1AY7 4 1 1.50 4 1 1.40 4 3 1.50 3 15 2.05 5 2 2.05 7 16 2.05
1AZS 2 3 1.78 2 2 1.78 2 1 1.78 2 143 1.88 2 2 1.88 2 1 2.34
1B6C 2 1 2.29 2 1 2.29 2 1 1.41 1 8 1.76 2 1 1.76 1 1 1.76
1BGX 1 1 2.97 1 1 3.76 1 1 2.97 1 1 3.10 1 1 3.10 1 1 3.10
1BJ1 2 2 2.32 2 1 2.32 3 2 2.32 3 1 2.70 3 1 2.70 3 2 2.70
1BKD 3 1 1.94 4 1 1.94 4 1 1.94 4 1 1.94 5 1 1.94 4 1 1.94
1BUH 8 1 0.99 6 2 0.99 7 3 0.99 3 87 1.14 2 191 2.06 7 5 2.02
1BVK 4 8 1.75 4 38 1.75 3 14 1.75 3 291 2.07 2 608 1.61 3 85 2.07
1BVN 6 1 1.24 5 1 1.24 8 1 1.24 10 1 4.32 12 1 1.91 15 1 1.91
1CGI 8 1 1.02 9 1 1.02 10 1 1.02 11 1 1.33 12 1 1.33 11 1 1.33
1CLV 12 1 0.79 12 1 0.79 20 1 0.79 24 1 1.78 28 1 1.78 36 1 1.78
1D6R 7 1 1.38 9 1 1.54 9 1 1.54 5 20 1.51 4 28 2.45 2 1512 1.51
1DE4 1 6 2.89 1 11 2.89 1 1 2.89 1 245 2.98 1 10 2.98 1 1 3.61
1DFJ 2 1 2.54 2 1 1.95 2 2 2.54 1 22 2.14 2 2 2.14 2 1 4.56
1DQJ 6 1 1.57 5 1 1.57 4 1 1.57 4 1 1.51 4 1 1.51 4 1 1.51
1E4K 1 142 2.42 1 36 2.42 1 1 2.42 0 - - 1 188 2.93 1 671 2.55
1E6E 2 1 1.33 5 1 1.33 5 1 1.33 4 3 1.15 5 1 1.15 6 1 1.15
1E6J 0 - - 0 - - 2 28 1.92 0 - - 1 290 2.77 2 158 2.33
1E96 1 155 1.81 1 155 1.81 1 1218 4.97 1 1369 1.66 2 368 1.66 1 1790 4.73
1EAW 6 1 1.46 5 1 1.46 6 1 1.46 7 1 2.02 8 1 1.55 3 3 2.02
1EER 1 1 2.54 1 1 2.80 1 1 2.54 1 2 2.95 1 1 2.70 1 1 2.70
1EFN 5 1 2.86 9 1 2.86 6 1 2.86 8 7 3.03 13 1 3.03 16 1 3.03
1EWY 2 282 1.18 4 67 1.18 4 15 1.18 3 29 1.71 5 2 1.71 6 5 1.71
1EZU 1 1 2.76 1 1 2.76 1 1 2.76 2 1 2.58 1 1 2.58 1 1 2.58
1F6M 3 1 1.02 2 4 1.02 5 1 1.02 4 75 1.58 4 3 4.49 8 1 2.16
1F34 2 1 1.79 2 1 1.79 2 1 1.74 2 1 1.79 2 1 1.79 2 1 1.79
1F51 3 1 1.02 4 1 1.02 4 1 1.02 4 103 4.25 5 7 3.28 6 8 1.23
1FAK 1 1 1.93 2 1 2.17 2 1 2.17 1 1 1.95 3 1 1.95 3 1 1.95
1FC2 2 1 3.80 2 4 3.80 2 1 3.80 2 32 3.68 2 33 3.68 2 11 2.09
1FCC 2 27 0.79 2 25 0.79 1 93 0.79 2 323 3.80 1 853 3.80 1 495 1.29
1FFW 2 155 0.89 7 10 1.42 5 19 1.42 2 1417 1.50 6 16 1.50 11 2 3.30
1FLE 5 1 1.30 7 1 1.30 6 1 1.30 6 2 4.41 6 1 1.44 6 2 1.44
1FQ1 1 1 1.34 1 2 1.34 1 1 1.34 0 - - 1 84 1.98 1 15 1.98
1FQJ 1 17 1.81 1 1 1.81 2 7 1.81 1 550 1.18 2 6 1.68 2 176 1.68
1FSK 5 1 1.33 4 1 1.33 5 1 1.33 4 5 1.71 4 1 1.71 3 1 1.71
1GCQ 7 1 1.35 7 1 1.35 6 1 1.35 4 18 1.37 4 9 1.37 8 3 1.37
1GHQ 0 - - 0 - - 1 3202 2.83 0 - - 0 - - 0 - -
1GL1 12 1 0.95 13 1 0.99 14 1 0.99 15 1 1.64 14 1 1.64 15 1 1.37
1GLA 3 659 3.82 3 122 3.82 4 144 3.82 0 - - 2 297 2.18 8 12 2.18
1GP2 2 69 2.22 2 1 2.22 2 1 2.22 1 41 2.22 2 1 2.22 2 1 2.22
1GPW 3 2 1.63 3 1 1.37 3 1 1.63 3 2 1.99 3 2 1.99 3 2 1.99
1GRN 1 1 1.89 2 1 1.42 2 1 1.42 3 2 1.74 4 1 1.74 4 1 1.74
1GXD 1 20 1.72 1 2 1.72 1 9 1.72 2 351 4.77 2 3 2.47 1 3 2.47
1H1V 1 43 1.67 1 164 1.67 1 42 1.67 0 - - 0 - - 0 - -
1H9D 4 1 1.44 3 1 1.44 4 1 1.44 4 1 2.36 4 1 2.36 5 1 2.36
1HCF 2 1 1.31 2 2 1.31 2 1 1.31 3 15 1.42 4 5 1.42 4 4 1.89
1HE1 4 1 1.44 3 1 1.44 5 1 1.44 3 1 1.77 4 1 1.77 4 1 1.77
1HE8 0 - - 5 354 4.83 3 208 4.27 0 - - 0 - - 1 393 4.29
1HIA 10 1 1.05 10 1 0.86 11 1 1.05 8 1 1.39 8 1 1.39 9 3 1.39
1I2M 2 1 1.69 2 1 1.69 1 1 1.69 1 1 1.73 1 1 1.73 1 1 1.73
1I4D 2 5 2.00 2 29 2.00 2 1 2.00 3 55 1.80 2 23 1.56 4 1 1.56
1I9R 1 225 3.84 1 88 3.84 1 93 3.84 0 - - 1 227 3.07 1 442 3.07
1IB1 1 9 2.21 1 4 2.68 1 4 1.40 2 9 2.72 2 8 2.72 2 33 1.62
1IBR 1 1 2.45 1 1 2.50 1 1 2.45 1 5 2.13 1 1 2.13 1 1 2.13
1IJK 1 87 1.70 1 1 1.58 2 1 1.58 1 212 1.96 3 1 1.96 3 1 1.79
1IQD 1 1 1.33 1 1 1.33 1 1 1.33 1 11 1.93 3 1 1.74 3 1 1.74
1IRA 1 1 1.09 2 1 1.09 2 1 1.09 2 1 1.22 2 1 1.50 3 1 1.50
1J2J 4 32 0.99 4 12 0.99 8 1 0.99 1 1215 3.52 6 39 1.57 9 1 1.91
1JIW 1 1 1.22 1 1 1.22 1 1 1.22 1 16 1.28 4 1 1.28 5 1 1.28
1JK9 2 2 1.33 3 5 1.33 3 2 1.13 4 16 1.23 4 3 2.10 4 1 1.41
1JMO 2 1 1.54 2 1 1.54 3 1 1.54 3 1 1.71 3 1 1.71 3 1 1.71
1JPS 3 1 2.28 3 1 2.28 3 1 2.28 2 39 2.34 2 7 2.05 2 36 2.41
1JTG 2 1 1.35 3 1 1.35 3 1 1.35 5 1 1.23 5 1 1.23 5 1 1.23
1JWH 1 1778 1.93 1 2737 1.39 2 39 4.75 0 - - 1 597 1.84 1 81 1.84
1JZD 1 1 1.12 1 1 1.12 1 1 1.24 1 20 1.98 2 2 1.98 4 1 1.98
1K4C 3 3 2.44 4 2 2.44 3 1 2.44 3 5 2.25 3 1 2.25 3 2 2.25
1K5D 2 1 1.69 2 1 1.69 2 1 1.69 2 1 1.73 2 1 1.73 2 1 1.73
1K74 1 1 2.33 1 1 2.33 1 1 2.33 1 3 3.00 2 1 3.00 2 1 2.39
1KAC 2 32 1.21 3 6 1.21 3 59 1.76 1 858 1.27 3 19 2.09 5 3 3.42
1KKL 2 196 1.33 2 463 1.33 1 702 3.60 2 251 1.55 2 198 1.30 6 510 3.54
1KLU 1 172 2.47 1 30 2.47 1 87 2.47 0 - - 0 - - 1 4 2.26
1KTZ 4 145 1.11 8 10 1.11 6 71 1.11 0 - - 6 5 1.62 7 63 1.62
1KXP 1 1 2.33 1 1 2.33 1 1 2.33 1 3 2.88 1 1 2.14 1 1 2.14
1KXQ 4 1 1.33 5 1 1.33 6 1 1.33 5 3 1.36 7 1 1.36 5 1 1.36
1LFD 4 1 1.32 5 1 1.32 4 1 1.32 3 48 1.10 5 1 1.71 5 4 1.10
1M10 2 3 2.35 2 1 2.35 2 1 2.93 2 107 2.13 2 1 2.52 2 1 3.40
1MAH 5 1 0.80 6 1 0.80 7 1 0.80 6 1 1.52 8 1 1.52 7 1 1.52
1ML0 7 1 1.03 6 1 1.03 8 1 1.03 8 2 1.78 11 1 1.78 12 1 1.78
1MLC 3 75 1.54 2 43 4.65 4 8 4.65 2 358 2.39 3 62 1.37 6 20 2.39
1MQ8 3 9 1.97 2 71 1.97 2 338 1.97 2 427 2.14 1 922 2.14 2 274 2.27
1N2C 2 3 1.95 2 4 2.38 2 3 1.95 0 - - 2 1 2.08 2 1 2.08
1N8O 3 1 2.44 3 1 2.44 3 1 2.44 3 1 2.99 3 1 2.99 2 1 2.99
1NCA 2 1 2.04 1 1 2.04 2 1 2.04 1 24 1.85 1 1 1.85 1 5 1.85
1NSN 3 502 1.11 3 93 1.11 3 51 1.36 3 742 3.32 3 77 2.16 4 34 2.16
1NW9 7 1 0.94 7 1 0.94 8 1 0.94 8 1 1.10 8 1 1.10 7 1 2.07
1OC0 8 2 0.93 11 2 0.93 6 1 0.93 3 92 1.11 7 3 1.11 10 3 1.11
1OFU 1 71 2.18 1 27 2.18 2 1 2.18 2 446 1.74 2 5 2.70 3 1 1.74
1OPH 3 3 1.67 4 12 1.67 5 3 1.53 3 169 1.42 5 18 1.42 6 71 1.42
1OYV 4 1 1.69 3 1 1.69 4 1 1.69 5 5 1.23 3 1 1.86 4 1 1.86
1PPE 14 1 1.31 14 1 1.31 16 1 1.38 19 1 1.33 20 1 1.33 21 1 2.30
1PVH 1 61 2.03 1 327 2.03 3 1 2.03 3 124 1.81 3 34 1.81 2 69 1.81
1PXV 2 1 1.01 3 1 1.01 3 1 1.01 6 1 1.25 6 1 1.25 5 1 2.05
1QA9 1 499 1.26 2 1 1.26 3 44 1.26 0 - - 3 24 1.46 5 23 1.46
1QFW 1 68 3.88 1 30 3.88 1 29 3.88 1 56 3.65 1 20 3.65 1 345 3.65
1R0R 10 1 1.01 9 1 1.01 11 1 1.01 9 1 1.29 15 2 1.29 14 2 1.29
1R6Q 6 1 1.40 5 1 1.40 5 1 1.40 3 372 3.70 4 21 1.39 2 66 1.39
1R8S 2 1 1.47 4 1 1.47 4 1 1.47 4 1 1.81 4 1 1.81 4 1 1.81
1RLB 1 618 1.30 1 174 1.30 1 22 1.30 0 - - 1 89 1.24 2 12 1.79
1RV6 3 4 1.55 2 3 1.55 2 2 1.55 2 359 1.72 3 17 1.72 8 1 1.72
1S1Q 4 4 0.99 4 8 0.99 4 5 0.99 3 771 1.60 4 41 1.60 3 43 1.60
1SBB 1 194 2.74 1 210 2.74 1 584 2.74 1 3114 2.94 1 1707 2.94 0 - -
1SYX 5 71 1.45 8 1 1.85 7 3 1.85 3 128 1.28 7 1 3.38 5 416 3.38
1T6B 2 2 1.66 2 5 1.66 2 3 1.66 1 62 2.66 3 12 2.66 3 1 2.66
1TMQ 2 1 0.95 2 1 0.95 2 1 0.95 2 2 2.09 2 2 2.09 5 1 2.07
1UDI 9 1 1.35 9 1 1.53 11 1 1.03 6 1 2.15 10 1 2.15 10 1 1.18
1US7 1 144 2.32 1 58 2.32 1 36 2.32 0 - - 1 381 2.59 1 296 2.81
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Table 3.5 (continue)
rPSC rPSC+ES rPSC+ES+RDE ZDOCK 2.1 (PSC) ZDOCK 2.3 (PSC+ES+DE) ZDOCK 3.0 (PSC+ES+IFACE)

PDB #NND Best RMSD #NND Best RMSD #NND Best RMSD #NND Best RMSD #NND Best RMSD #NND Best RMSD
ID Rank Rank Rank Rank Rank Rank

1VFB 3 3 1.03 2 8 1.59 2 1 1.59 2 196 1.65 1 198 1.65 1 64 1.65
1WDW 1 1 1.49 2 1 1.49 2 1 1.49 1 1 2.53 3 1 2.53 2 1 2.53
1WEJ 4 16 1.44 3 10 1.44 3 2 1.44 3 523 1.57 3 162 1.57 5 17 1.57
1WQ1 2 1 1.45 4 1 1.45 4 1 1.04 2 1 1.82 2 1 1.82 3 1 1.82
1XD3 4 1 1.05 3 1 1.05 5 1 1.05 2 1 1.77 5 1 1.66 7 1 1.77
1XQS 1 1 2.12 2 1 2.12 2 1 2.12 1 2 1.79 1 1 1.79 1 1 1.79
1XU1 4 1 1.29 4 1 0.98 5 1 0.98 5 7 3.15 9 2 1.48 16 3 3.15
1Y64 1 61 1.61 1 2 1.83 1 1 1.83 1 29 2.28 1 2 2.28 1 109 2.28
1YVB 1 1 2.06 1 1 2.06 1 1 2.06 1 31 2.03 1 2 2.76 2 1 2.76
1Z0K 5 2 4.29 5 2 1.18 6 1 1.69 6 4 1.57 6 1 0.92 6 1 0.92
1Z5Y 4 3 1.64 4 4 1.67 3 3 1.64 2 21 2.11 3 5 2.11 3 1 2.11
1ZHH 1 4 1.66 1 1 1.52 2 1 1.52 2 31 2.28 3 1 2.08 3 1 2.28
1ZHI 2 25 1.13 3 1 1.13 4 3 1.13 1 75 2.15 2 6 2.14 2 3 2.14
1ZLI 4 1 1.33 4 1 1.33 4 1 1.35 5 1 1.36 5 1 1.36 6 1 4.29
1ZM4 1 737 4.60 3 289 1.76 2 76 4.60 0 - - 1 318 1.54 1 11 1.54
2A5T 2 1 1.66 2 1 1.66 2 1 1.66 1 7 2.03 2 2 2.03 2 2 2.03
2A9K 3 1 2.20 2 1 2.20 2 1 2.20 1 4 2.51 2 1 2.51 2 1 2.03
2ABZ 8 1 1.53 6 10 1.53 8 16 2.57 8 42 3.15 9 8 3.26 8 13 3.26
2AJF 0 - - 0 - - 0 - - 0 - - 0 - - 1 143 1.88
2AYO 5 1 1.48 6 1 1.48 6 1 1.48 7 1 2.15 8 1 2.15 7 1 2.15
2B4J 4 1 1.04 4 2 1.04 3 1 1.04 2 761 1.88 4 14 1.88 5 71 3.65
2B42 4 1 1.42 3 1 1.42 5 1 1.42 5 1 1.68 5 1 1.68 5 1 1.68
2BTF 4 1 1.33 5 1 1.33 5 1 1.33 4 4 1.84 4 1 1.24 5 6 1.24
2C0L 1 1 2.01 1 1 2.01 1 1 2.01 1 5 1.51 2 1 1.51 2 1 1.51
2CFH 5 1 1.79 5 1 1.79 5 1 1.79 4 1 1.54 6 1 1.54 6 1 1.57
2FD6 2 228 1.98 1 877 4.39 2 157 1.98 0 - - 2 249 1.74 1 21 1.74
2FJU 1 488 1.13 1 166 1.13 2 78 1.13 0 - - 1 496 1.39 2 3 1.39
2G77 4 1 1.43 4 1 1.43 4 1 1.43 4 1 1.37 5 1 2.18 4 1 2.18
2H7V 1 3 1.56 1 2 1.56 1 1 1.56 1 371 2.29 2 18 2.29 2 1 2.29
2HLE 3 1 1.23 3 1 1.23 3 1 1.23 4 2 1.86 4 1 1.86 3 2 1.86
2HMI 2 310 4.46 1 481 4.46 0 - - 0 - - 0 - - 1 10 4.53
2HQS 3 1 1.35 4 1 1.35 4 1 1.35 2 4 1.71 5 1 1.71 3 3 1.71
2HRK 1 1 1.17 3 1 1.17 6 1 1.17 4 20 2.05 4 7 2.05 5 5 2.54
2I9B 2 1 1.07 2 1 1.07 2 1 1.07 2 1 1.37 3 1 1.37 3 1 1.83
2I25 6 1 1.15 6 1 1.15 6 1 1.15 4 45 3.16 6 1 1.44 6 1 3.16
2IDO 7 1 1.20 7 1 1.20 8 1 1.20 7 1 1.60 7 1 1.60 7 1 1.60
2J0T 2 1 1.59 1 1 1.59 2 1 1.59 1 2 1.43 2 6 1.43 2 66 1.43
2J7P 1 1 1.82 2 1 1.82 2 1 1.82 2 1 2.08 2 1 2.08 1 1 1.45
2JEL 4 1 1.09 3 2 1.09 7 1 1.09 2 469 2.75 4 209 2.75 8 6 1.26
2MTA 4 5 0.99 4 1 0.99 8 1 0.99 3 226 1.48 10 5 1.87 11 1 2.57
2NZ8 2 2 2.07 2 1 2.07 1 1 2.07 4 10 1.93 4 2 1.93 3 1 1.82
2O3B 2 2 1.29 2 1 1.29 2 7 1.29 1 289 1.48 2 2 1.48 2 1 1.39
2O8V 8 1 1.59 8 1 1.59 9 1 1.59 5 4 1.30 7 1 1.30 9 1 1.47
2OOB 0 - - 1 2081 4.63 1 887 1.13 0 - - 0 - - 0 - -
2OOR 3 1 1.73 4 1 1.73 4 1 1.73 3 3 1.68 3 1 1.68 4 1 1.68
2OT3 4 1 1.84 4 1 1.84 4 1 1.84 4 1 1.31 6 1 1.31 4 1 1.31
2OUL 2 1 1.24 2 1 1.24 2 1 1.24 3 8 2.05 3 2 2.05 2 2 2.05
2OZA 1 1 1.74 1 1 1.74 1 1 1.66 1 1 1.98 1 1 1.98 1 1 1.98
2PCC 1 1169 1.03 1 91 1.03 1 81 1.03 0 - - 1 216 1.64 2 32 1.79
2QFW 2 9 2.43 3 6 3.67 2 14 2.43 1 1313 2.52 1 314 1.81 1 45 1.81
2SIC 2 1 1.85 2 1 1.85 3 1 1.85 3 6 1.72 3 2 1.98 5 1 1.98
2SNI 6 2 1.71 7 2 1.71 7 1 1.61 9 1 1.10 9 1 1.10 7 1 1.10
2UUY 6 1 1.64 6 1 1.64 9 1 1.64 8 1 1.46 8 1 2.89 9 10 2.89
2VDB 5 1 1.02 5 1 1.02 5 1 1.02 7 8 1.55 6 1 1.56 10 1 3.72
2VIS 1 938 3.74 1 1165 3.74 1 1247 3.74 0 - - 1 1804 2.23 2 213 3.27
2Z0E 1 1 1.57 3 1 1.57 3 1 1.57 4 1 1.55 3 1 1.55 3 1 1.55
3BP8 2 21 0.99 4 57 1.11 7 20 0.99 1 1183 1.32 2 563 1.32 3 388 3.10
3CPH 1 5 1.74 2 1 1.74 3 1 1.74 1 24 2.06 3 1 2.06 3 1 2.06
3D5S 3 5 0.88 5 3 1.48 5 1 1.48 3 18 2.55 7 1 2.55 5 4 1.28
3SGQ 8 1 0.78 9 1 1.28 9 1 0.78 8 5 1.43 7 8 1.43 5 56 3.51
4CPA 17 2 1.03 16 1 1.03 18 4 1.03 14 3 3.60 16 7 3.61 20 2 4.10
7CEI 2 1 1.49 2 1 1.49 3 1 1.49 4 7 4.99 6 1 4.99 5 2 4.77
BOYV 1 26 2.37 1 138 2.37 1 53 2.37 0 - - 0 - - 0 - -
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Table 3.6: Docking prediction performance of MEGADOCK and ZDOCK for the
unbound docking test cases in protein–protein docking benchmark 4.0. #NND de-
notes the number of near-native decoy in the top 3,600 predictions, Best Rank is the
rank of first near-native decoy, and RMSD is the L-RMSD of first near-native decoy
(RMSDbest).

rPSC rPSC+ES rPSC+ES+RDE ZDOCK 2.1 (PSC) ZDOCK 2.3 (PSC+ES+DE) ZDOCK 3.0 (PSC+ES+IFACE)
PDB #NND Best RMSD #NND Best RMSD #NND Best RMSD #NND Best RMSD #NND Best RMSD #NND Best RMSD
ID Rank Rank Rank Rank Rank Rank

1A2K 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1ACB 0 - - 1 1640 4.94 1 2480 4.94 1 1666 4.78 3 948 4.08 4 204 4.78
1AHW 1 67 3.23 1 63 3.23 1 97 3.23 1 878 2.52 1 1149 2.52 1 1550 2.52
1AK4 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1AKJ 0 - - 1 1872 4.99 1 2885 2.21 1 2029 4.48 2 173 3.71 1 1383 3.33
1ATN 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1AVX 1 1466 4.18 2 992 4.18 1 1021 4.18 1 2047 4.76 1 2435 4.76 1 228 3.16
1AY7 0 - - 1 1483 3.69 0 - - 2 1434 4.92 0 - - 3 1510 4.96
1AZS 0 - - 0 - - 0 - - 0 - - 1 624 2.55 2 88 2.55
1B6C 1 2640 3.02 1 1965 3.02 1 157 3.02 1 1566 3.18 1 154 3.18 1 24 2.97
1BGX 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1BJ1 2 131 4.59 1 361 4.59 1 16 4.59 2 179 4.29 2 69 4.29 2 2 4.29
1BKD 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1BUH 1 1759 4.31 0 - - 0 - - 0 - - 0 - - 6 45 4.65
1BVK 0 - - 0 - - 0 - - 1 3125 4.60 0 - - 2 256 4.32
1BVN 0 - - 1 466 4.83 5 437 4.83 4 91 4.23 7 16 4.28 8 2 4.28
1CGI 0 - - 0 - - 0 - - 3 467 4.95 2 46 4.78 5 151 4.86
1CLV 0 - - 0 - - 0 - - 4 258 3.22 6 64 4.51 16 1 3.22
1D6R 0 - - 0 - - 0 - - 1 1564 4.48 1 1047 4.48 0 - -
1DE4 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1DFJ 0 - - 0 - - 0 - - 1 9 3.73 1 4 3.73 1 3 2.83
1DQJ 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1E4K 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1E6E 0 - - 2 89 2.57 3 269 2.49 1 3375 4.81 6 240 3.92 7 15 3.16
1E6J 2 314 3.74 2 352 3.74 4 17 3.74 0 - - 4 519 4.28 2 140 4.24
1E96 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1EAW 2 82 4.47 3 49 4.47 4 94 4.47 8 3 4.64 8 5 4.64 6 39 4.64
1EER 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1EFN 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1EWY 3 746 3.69 5 69 4.68 6 60 4.68 1 2993 4.37 6 24 4.78 6 11 4.78
1EZU 0 - - 0 - - 0 - - 1 710 3.02 1 1096 3.02 0 - -
1F6M 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1F34 0 - - 0 - - 1 1637 2.41 1 681 3.16 1 147 3.16 1 634 3.12
1F51 0 - - 1 2831 3.10 2 1049 4.38 1 1103 4.46 1 2344 4.46 1 1438 3.06
1FAK 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1FC2 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1FCC 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1FFW 0 - - 0 - - 0 - - 0 - - 0 - - 2 65 4.86
1FLE 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1FQ1 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1FQJ 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1FSK 4 1 1.83 4 1 1.83 4 1 1.83 4 14 2.12 4 1 2.12 4 1 2.12
1GCQ 1 2538 2.84 1 708 3.26 2 109 3.26 0 - - 0 - - 0 - -
1GHQ 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1GL1 2 2493 4.04 0 - - 0 - - 8 149 3.69 5 953 3.60 2 262 3.69
1GLA 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1GP2 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1GPW 1 68 2.25 0 - - 0 - - 2 5 2.40 2 13 2.40 2 80 2.40
1GRN 3 78 3.26 2 281 3.26 3 1417 3.26 1 443 4.56 0 - - 1 2653 4.56
1GXD 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1H1V 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1H9D 1 475 4.75 0 - - 1 45 4.75 0 - - 0 - - 2 392 4.58
1HCF 0 - - 0 - - 0 - - 0 - - 0 - - 3 103 4.29
1HE1 0 - - 0 - - 0 - - 2 182 4.46 0 - - 0 - -
1HE8 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1HIA 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1I2M 0 - - 0 - - 0 - - 0 - - 1 2373 2.57 1 43 2.57
1I4D 0 - - 0 - - 0 - - 0 - - 0 - - 1 1020 4.85
1I9R 1 136 3.59 1 186 3.59 0 - - 1 348 4.47 0 - - 0 - -
1IB1 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1IBR 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1IJK 0 - - 0 - - 1 526 2.61 0 - - 0 - - 1 462 2.33
1IQD 1 2853 3.64 0 - - 0 - - 0 - - 1 432 4.53 3 46 4.48
1IRA 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1J2J 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1JIW 0 - - 0 - - 0 - - 1 2763 4.75 0 - - 0 - -
1JK9 1 1014 4.68 1 1371 4.68 1 602 4.68 0 - - 2 394 3.78 1 1544 4.81
1JMO 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1JPS 2 283 2.78 2 246 2.78 2 20 2.78 1 2231 3.38 0 - - 1 1180 3.53
1JTG 2 3 3.26 4 1 3.68 4 1 3.68 3 1 3.83 4 1 3.83 5 1 3.83
1JWH 0 - - 0 - - 0 - - 0 - - 0 - - 1 170 2.48
1JZD 1 2994 4.96 1 2265 4.96 1 1594 4.96 0 - - 1 1181 4.95 1 82 4.95
1K4C 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1K5D 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1K74 1 465 3.80 1 1 3.81 1 3 4.42 1 849 4.10 1 1 3.50 1 4 3.49
1KAC 3 175 4.95 3 1301 4.27 1 538 4.95 1 2586 4.30 0 - - 1 1554 4.26
1KKL 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1KLU 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1KTZ 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1KXP 1 30 3.04 1 1 3.04 1 4 3.04 1 172 3.39 1 2 3.63 2 1 3.63
1KXQ 1 80 2.93 1 386 2.93 1 268 2.93 2 38 1.37 2 25 1.37 2 1 1.37
1LFD 1 2737 4.27 1 2720 4.27 1 2073 4.27 0 - - 0 - - 1 684 4.24
1M10 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1MAH 3 461 4.05 4 209 4.05 6 10 4.04 4 41 3.97 7 2 3.97 8 1 3.97
1ML0 1 534 3.12 1 150 3.12 3 19 3.12 3 152 3.62 4 20 4.10 7 35 3.59
1MLC 1 64 4.33 1 60 4.33 2 33 3.90 0 - - 1 388 4.49 3 86 3.54
1MQ8 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1N2C 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1N8O 1 36 2.67 1 139 2.67 1 6 2.67 1 144 3.09 1 8 2.86 2 3 2.86
1NCA 2 8 5.00 2 28 4.76 2 9 4.76 1 339 1.97 1 58 2.75 1 183 1.97
1NSN 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1NW9 0 - - 1 2070 4.49 0 - - 0 - - 0 - - 0 - -
1OC0 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1OFU 0 - - 0 - - 0 - - 0 - - 0 - - 1 33 2.41
1OPH 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1OYV 1 1662 4.90 2 1029 4.90 1 1568 4.15 2 157 3.74 3 128 4.40 2 111 4.40
1PPE 8 3 4.75 9 1 4.75 15 1 3.07 17 1 4.23 16 1 2.58 17 1 2.58
1PVH 0 - - 0 - - 0 - - 0 - - 0 - - 3 1519 4.70
1PXV 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1QA9 1 2011 2.90 1 1452 2.95 0 - - 0 - - 0 - - 0 - -
1QFW 1 94 3.73 1 119 3.73 1 191 3.73 1 491 3.63 1 65 3.63 1 326 3.26
1R0R 5 81 2.79 4 67 2.79 5 118 2.79 6 365 2.50 6 207 2.31 6 470 2.42
1R6Q 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1R8S 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1RLB 0 - - 0 - - 1 421 4.52 0 - - 0 - - 1 101 4.49
1RV6 1 2847 4.77 2 1418 2.50 1 903 2.50 0 - - 1 422 2.46 3 1 2.45
1S1Q 3 341 2.86 2 547 2.86 6 76 2.86 1 1610 4.85 3 1397 4.27 4 481 4.48
1SBB 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1SYX 1 63 4.96 3 104 4.96 1 2829 4.96 2 108 4.99 2 84 4.99 1 17 4.90
1T6B 0 - - 0 - - 0 - - 1 2133 3.16 1 495 3.16 1 196 3.16
1TMQ 1 657 4.59 0 - - 0 - - 1 709 2.69 2 171 4.89 4 12 4.89
1UDI 0 - - 0 - - 0 - - 1 280 4.35 2 52 4.35 3 61 3.93
1US7 0 - - 0 - - 1 2901 4.53 0 - - 0 - - 2 874 4.24
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Table 3.6 (continue)
rPSC rPSC+ES rPSC+ES+RDE ZDOCK 2.1 (PSC) ZDOCK 2.3 (PSC+ES+DE) ZDOCK 3.0 (PSC+ES+IFACE)

PDB #NND Best RMSD #NND Best RMSD #NND Best RMSD #NND Best RMSD #NND Best RMSD #NND Best RMSD
ID Rank Rank Rank Rank Rank Rank

1VFB 2 393 2.07 0 - - 1 2169 4.39 1 3050 4.99 0 - - 1 2261 4.93
1WDW 2 11 2.80 2 43 2.15 2 6 2.15 2 12 2.87 2 1 2.80 2 4 2.87
1WEJ 1 1583 1.64 3 183 1.64 3 170 1.79 1 3307 4.67 3 620 1.86 6 156 1.88
1WQ1 0 - - 0 - - 0 - - 0 - - 0 - - 1 1618 4.34
1XD3 0 - - 0 - - 2 611 4.97 0 - - 2 1662 4.31 8 6 4.85
1XQS 0 - - 1 718 4.47 0 - - 0 - - 1 563 4.46 1 139 4.46
1XU1 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1Y64 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1YVB 1 9 3.94 1 34 3.94 1 4 3.94 0 - - 0 - - 0 - -
1Z0K 1 1888 4.87 0 - - 1 208 4.87 0 - - 1 601 4.83 0 - -
1Z5Y 0 - - 0 - - 0 - - 0 - - 0 - - 3 87 4.99
1ZHH 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1ZHI 0 - - 1 869 4.36 2 925 4.46 0 - - 1 1424 4.47 2 85 4.47
1ZLI 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
1ZM4 0 - - 0 - - 0 - - 0 - - 0 - - 1 25 3.29
2A5T 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2A9K 0 - - 0 - - 0 - - 0 - - 1 859 2.28 0 - -
2ABZ 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2AJF 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2AYO 2 483 4.11 2 114 3.40 1 56 3.40 3 171 4.95 4 6 3.05 6 61 4.72
2B4J 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2B42 0 - - 0 - - 0 - - 2 1 1.83 2 1 1.83 2 1 1.83
2BTF 0 - - 0 - - 0 - - 0 - - 0 - - 4 170 3.93
2C0L 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2CFH 1 938 4.98 2 112 4.98 2 2 4.98 2 700 4.74 2 64 4.74 2 6 4.74
2FD6 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2FJU 0 - - 0 - - 0 - - 0 - - 0 - - 1 1276 4.84
2G77 0 - - 0 - - 0 - - 0 - - 1 1362 3.83 5 19 3.83
2H7V 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2HLE 0 - - 1 21 4.35 2 32 4.35 0 - - 1 164 3.60 2 217 4.17
2HMI 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2HQS 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2HRK 0 - - 0 - - 0 - - 1 416 4.92 1 923 4.92 1 779 4.92
2I9B 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2I25 0 - - 1 1105 3.35 0 - - 0 - - 2 871 3.68 6 9 1.82
2IDO 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2J0T 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2J7P 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2JEL 1 2607 4.33 0 - - 3 937 4.77 1 2621 3.69 1 1591 4.34 10 119 4.38
2MTA 2 195 4.93 1 167 4.93 4 20 4.93 0 - - 2 2867 2.07 8 196 4.65
2NZ8 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2O3B 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2O8V 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2OOB 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2OOR 0 - - 0 - - 0 - - 0 - - 0 - - 1 924 4.55
2OT3 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2OUL 2 1 1.65 2 1 1.65 3 1 1.65 2 3 2.28 3 1 2.25 3 1 2.25
2OZA 0 - - 0 - - 0 - - 1 1074 4.81 1 2234 4.81 0 - -
2PCC 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2QFW 1 40 3.61 1 26 3.61 1 118 3.61 0 - - 1 702 3.41 1 98 4.15
2SIC 2 547 3.33 2 1173 3.33 2 548 3.33 1 706 2.18 1 235 2.18 2 4 2.18
2SNI 0 - - 0 - - 0 - - 0 - - 1 2427 4.68 3 1376 3.63
2UUY 0 - - 0 - - 1 2633 4.81 1 1349 4.61 1 1511 4.61 1 3411 4.61
2VDB 3 27 4.31 3 42 4.31 3 89 4.31 4 600 4.24 3 50 1.75 4 17 1.75
2VIS 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
2Z0E 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
3BP8 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
3CPH 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
3D5S 2 862 3.40 4 44 3.40 6 11 3.40 2 615 3.94 6 3 2.12 5 60 2.12
3SGQ 4 19 4.73 2 17 4.73 6 8 4.73 2 293 3.94 4 45 4.06 3 675 2.11
4CPA 4 257 4.03 6 61 4.03 6 34 4.03 10 8 4.76 13 6 3.56 17 1 3.55
7CEI 2 43 3.60 2 7 3.60 2 3 2.84 2 429 3.94 2 10 3.94 3 23 3.94
BOYV 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -

Table 3.7: The sum of #NND values (Σ#NND) and the number of cases with at least
one near-native decoy in the top 100 scored decoys (#successes100).

bound
rPSC rPSC+ES rPSC+ES+RDE ZDOCK 2.1 ZDOCK 2.3 ZDOCK 3.0

Σ#NND 545 593 661 537 693 783
#successes100 149 156 163 116 144 154

unbound
rPSC rPSC+ES rPSC+ES+RDE ZDOCK 2.1 ZDOCK 2.3 ZDOCK 3.0

Σ#NND 103 116 155 143 193 299
#successes100 22 22 30 13 31 47



3. Rapid Protein–Protein Docking Method 45

0%

20%

40%

60%

80%

100%

1 10 100 1000

S
u
c
c
e
s
s
 
r
a
t
e

Number of decoys

rPSC+ES+RDE

rPSC+ES

rPSC

ZDOCK 3.0

ZDOCK 2.3

ZDOCK 2.1

0%

10%

20%

30%

40%

50%

1 10 100 1000

S
u
c
c
e
s
s
 
r
a
t
e

Number of decoys

rPSC+ES+RDE

rPSC+ES

rPSC

ZDOCK 3.0

ZDOCK 2.3

ZDOCK 2.1

(a) bound

(b) unbound

Figure 3.5: Success Rate for all test cases of benchmark dataset. The Success Rate
was defined as the percentage of cases with near-native decoys for a given number of
top-ranked docking predictions per test case.
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β−actin and profilin
(PDB id : 2BTF)

Trypsinogen protein and 
trypsin inhibitor
(PDB id : 1CGI) Green: MEGADOCK predicted 

Red: X-ray crystalline structure

Figure 3.6: Complex structure predicted by docking (left: 1CGI; right: 2BTF). Pro-
teins shown by the surface correspond to receptors whereas those shown by ribbon
representations correspond to ligands both from bound structures. Green colored lig-
ands show the prediction by MEGADOCK, whereas red colored ligands are X-ray
structures.
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Table 3.8: Total time for 352 docking calculations using the benchmark dataset.

rPSC rPSC+ES rPSC+ES+RDE ZDOCK 2.1 ZDOCK 2.3 ZDOCK 3.0
time (hour) 69.0 69.7 70.0 85.5 309.2 684.3

speedup from ZDOCK 3.0 9.91 9.82 9.78 8.00 2.21 (1.0)

Table 3.9: Ratio of time spent for each process in the total docking time (average of 352
dockings of protein–protein docking benchmark 4.0 [82], calculated with single thread
setting)

Calculation Ratio of time spent for the process [%]
(mean ± s.d.)

Receptor voxelization and FFT 1.19± 0.62
Ligand rotation and voxelization 6.41± 3.13
Ligand FFT 40.38± 2.79
Inverse FFT 45.99± 2.25
Post processes 6.02± 1.46

Table 3.9 shows the ratio of time spent for each MEGADOCK process in the total

docking time (average of 352 dockings of protein–protein docking benchmark 4.0. Lig-

and FFT and inverse FFT consists large part (on average 86.4% for 352 dockings) of

the calculation time.

FFT consumed approximately 86.4% of the total docking time. In our case, the

scoring function with only rPSC consumed 11.76 min on average, and hence, the time

for FFT was estimated to be 10.16 min. The addition of a correlation function us-

ing the FFT results led to calculation times that were 1.86 times longer than the

simple scoring function, or, in other words, an 10.16 min increase. In the proposed

rPSC+ES+RDE function, by avoiding the addition of FFT, the time increase was

suppressed to approximately 0.17 min; that is a 98.3% reduction in time than the

simple FFT addition. Table 3.8 also shows that MEGADOCK was approximately 4.4

times faster than ZDOCK 2.3 and 9.8 times faster than ZDOCK 3.0. Since FFT takes

most of the execution time of MEGADOCK, if we increase the FFT correlation func-

tion to two or three to get better performance of docking, calculation time will also

increase 2- or 3-fold.
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3.3.5 Parameter of grid width

Commonly, the FFT grid-based protein–protein docking methods used the grid width

(spacing) of 1.2 Å. In comparison to ZDOCK, we used same parameter of grid width.

In this subsection, we show the results of our method with other values of grid width.

Fig. 3.7 shows the docking success rate in various grid width and Table 3.10 shows the

total time consumed for docking the benchmark 4.0 dataset.

The calculation time get greater with smaller grid width. The theoretical ratio from

the grid width of 1.2 Åin Table 3.10 were estimated using a protein with the FFT size

of N = 128 as an example. When the grid width is changed to v = 0.8 Å, the FFT size

is changed to N = 192 (128× 1.2/0.8). In theory FFT takes the order of O(N3 logN)

for calculation. Therefore calculations involving a size of N = 192 (v = 0.8 Å) FFT

should take 0.27 times ((1283 log 128)/(1923 log 192) = 0.273...) the elapsed time of a

corresponding calculation involving a size of N = 128 (v = 1.2 Å) FFT. Although

Table 3.10 shows the total time of various size of proteins, the speed up ratio from

v = 1.2 Å is closed to theoretical value.

In summary of these results, although using the grid width parameters of v = 1.4–

1.6 Å is efficient for faster calculation (26.2 times faster than ZDOCK 3.0), usually we

should use the default grid width parameter of v = 1.2 Å.
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Figure 3.7: Success Rate for all test cases of benchmark dataset with various grid width
parameters. The Success Rate was defined as the percentage of cases with near-native
decoys for a given number of top-ranked docking predictions per test case.
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3.3.6 Large-scale parallel computing

MEGADOCK was parallelized with the MPI and OpenMP library (see Appendix A

for more information) and implemented on GPUs (see Appendix B for more informa-

tion). Because the calculations for each pair are almost independent, we can parallelize

an all-to-all exhaustive protein–protein docking calculation task using several methods

on hundreds of thousands of CPU cores. The user can specify the numbers of recep-

tor and ligand protein data to be assigned to a single processor after considering the

memory capacity. We tested this data parallelization using about 700,000 cores. When

a processor is assigned for data comprising nR receptors and nL ligands, it calculates

FFT for the first ligand with each possible rotation. The FFT results are repeatedly

employed for docking with all nR receptors to avoid redundant calculations. Subse-

quently, the process is repeated nL times. MEGADOCK has an option to avoid DFT

calculations and upload precalculated DFT results from the “FFT protein structure

library” onto the hard disk drives. This approach is effective in a system with high I/O

performance. The FFT routine in MEGADOCK uses FFT bases of {2, 3, 5, 7, 9, 11}
to minimize the volume of the target 3D grid. However, if we choose too many FFT

bases, it is necessary to prepare many precalculated FFT models in the library, because

protein pairing is unknown a priori. In contrast, if we use GPU acceleration, it is better

to simply repeat FFT calculations on a GPU with the most adequate combinations of

FFT bases. We considered this in our study when we implemented our system with

the aim of high computing power rather than I/O performance.

As a result, our GPU and parallel implementation achieved 37.0-fold acceleration

using one computing node with three GPUs and worked in high-performance computing

environments equipped with over ten thousands nodes (∼ 25,000 nodes). We described

more details in Appendices A and B.

3.4 Summary

In this chapter, we introduced a novel shape complementarity function rPSC and

a novel desolvation free energy function RDE. rPSC and RDE represents shape com-

plementarity, electrostatics interaction and desolvation free energy between target pro-

teins with only one FFT correlation function without increasing the calculation time.

MEGADOCK was shown to be 9.8 times faster than the conventional software ZDOCK

3.0 while maintaining acceptable docking prediction accuracies. However, to enhance

the accuracy of the proposed model, further tuning of some system parameters is nec-
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essary. For example, ACE was introduced only into the receptor side in the study. We

are attempting to develop a new score model with both receptor and ligand ACE term

using only one correlation function.
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Chapter 4

Development of an Exhaustive

Protein–Protein Interaction

Prediction System

4.1 Introduction

In the present study, we describe the development of a rigid-body docking-based

method for PPI screening based on exhaustive calculations of pseudo-binding energies

among pairs of target proteins that can be applied to PPI prediction problems of mega-

order data. Further, to enable applications to megaorder combinations, we developed

efficient FFT-based protein–protein docking software called MEGADOCK, which is

designed for exhaustive PPI screening. MEGADOCK searches the relevant interacting

protein pairs by conducting protein–protein docking between the tertiary structures of

the target proteins and then analyzing the distributions of high-scoring decoys.

4.2 Materials and Methods

MEGADOCK predicts the relevant PPIs according to the affinity scores calculated

by the post-processing of all the docking results. The components and outline of

MEGADOCK system is shown in Fig. 4.1

55
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receptor
protein (i)

ligand
protein (j)

Docking
Calculation

Predicted decoys (i,j)

PPI
Decision

PPI(i,j)?
True/False

Figure 4.1: Process flow for MEGADOCK, the PPI prediction system proposed in
this chapter. This system calculates FFT-based rigid-body docking by using the given
receptor protein i and ligand protein j pair, generates 10,800 high-ranked decoys, and
detects the interacting (i, j) pair from docking score distributions.

4.2.1 Reranking of decoys

By default, the docking part of the system outputs 3, 600 × t high-scoring decoys

from 3, 600×N3 ligand rotations and translations. In this study, we conducted docking

with t = 3; the output was 10,800 decoys. However, some decoys with high docking

scores often exhibit high binding energies when examined in more detailed methods.

To reduce such unwanted structures, we applied re-ranking of the high-scoring decoys.

This process collects near native decoys with high ranking, thereby excluding decoys

with unrealistic, high binding energies. We used ZRANK [78] because it calculates the

binding energy of each decoy based on the van der Waals energy, electrostatic energy

and desolvation energy among the atoms in close contact.

4.2.2 PPI decision

From the results of docking and reranking calculations, we predicted whether a

protein pair can interact or not. The PPI(i, j) of protein i and j evaluation value E is

defined as follows:

E =
S1 − µ

σ
, (4.1)

µ =
1

D

D∑
k=1

Sk, (4.2)

σ2 =
1

D

D∑
k=1

(Sk − µ)2, (4.3)
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Table 4.1: The selected 44 complex structures from the protein–protein docking bench-
mark 2.0 dataset (small dataset)

1ACB 1AK4 1ATN 1AVX 1AY7 1B6C 1BUH 1BVN
1CGI 1D6R 1DFJ 1E6E 1E96 1EAW 1EWY 1F34
1FC2 1FQ1 1FQJ 1GCQ 1GHQ 1GRN 1H1V 1HE1
1HE8 1I2M 1IBR 1KAC 1KTZ 1KXP 1KXQ 1M10
1MAH 1PPE 1QA9 1SBB 1TMQ 1UDI 1WQ1 2BTF
2PCC 2SIC 2SNI 7CEI

where S1 is the top-ranked decoy’s docking score for a protein pair, Sk is the k-th ranked

decoy’s docking score, and D is the number of decoys. In this study, we generated

10,800 decoys (= D) by using MEGADOCK. We concluded that a pair interacts if E

is larger than threshold E∗:

PPI(i, j) =

True if E > E∗

False otherwise
(4.4)

4.2.3 Dataset

Data for protein complexes were selected from protein–protein docking benchmark

2.0 [80] (Table 4.1) and protein–protein docking benchmark 4.0 [82] (Table 4.2), both

from bound structures and used to evaluate the performance of our system. Each of

the selected 44 complexes (called the small dataset) for optimization of the parameter

t and 120 complexes (called the large dataset) for the evaluation of larger datasets

consisted of a pair of monomer proteins (this selection of data was prepared based on

a personal communication with Dr. Ryotaro Koike and Dr. Motonori Ota. All the

complexes selected consisted of two monomers).

We conducted docking and PPI prediction processes on all combinations of all recep-

tors and all ligand structures (44× 44 = 1,936 and 120× 120 = 14,400 combinations)

according to the prediction procedure.

4.2.4 Prediction accuracy measure

Each prediction of the possibilities of interactions in the given protein pair

was evaluated as true positive (TP), false positive (FP), true negative (TN)

and false negative (FN). For the benchmark data, we assumed 44 TP interac-
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Table 4.2: The selected 120 complex structures from the protein–protein docking bench-
mark 4.0 dataset (large dataset)

1ACB 1AK4 1ATN 1AVX 1AY7 1B6C 1BKD 1BUH
1BVN 1CGI 1CLV 1D6R 1DFJ 1E6E 1E96 1EAW
1EFN 1EWY 1F6M 1F34 1FC2 1FFW 1FLE 1FQ1
1FQJ 1GCQ 1GHQ 1GL1 1GLA 1GPW 1GRN 1GXD
1H1V 1H9D 1HE1 1HE8 1I2M 1IBR 1IRA 1J2J
1JIW 1JK9 1JTG 1KAC 1KTZ 1KXP 1KXQ 1LFD
1M10 1MAH 1MQ8 1N8O 1NW9 1OC0 1OPH 1OYV
1PPE 1PVH 1PXV 1QA9 1R0R 1R6Q 1R8S 1S1Q
1SBB 1SYX 1T6B 1TMQ 1UDI 1US7 1WQ1 1XD3
1XQS 1Y64 1YVB 1Z0K 1Z5Y 1ZHH 1ZHI 1ZLI
1ZM4 2A5T 2A9K 2ABZ 2AJF 2AYO 2B42 2BTF
2C0L 2CFH 2FJU 2G77 2H7V 2HLE 2HQS 2HRK
2I9B 2I25 2IDO 2J0T 2J7P 2NZ8 2O3B 2O8V
2OOB 2OT3 2OUL 2OZA 2PCC 2SIC 2SNI 2UUY
2VDB 2Z0E 3CPH 3D5S 3SGQ 4CPA 7CEI BOYV

tions in the small dataset and 120 TP interactions in the large dataset, where

each protein has exclusively one interacting partner from the same crystal struc-

ture as the protein complex. The overall performance of the screening system

was evaluated by employing the F-measure, the harmonic mean of the Precision

(#TP/(#TP+#FP)) and the Recall (#TP/(#TP+#FN)). We also show the Accu-

racy ((#TP+#TN)/(#TP+#FN+#FP+#TN)) to show comparison of PPI predic-

tion performance with previous works, however the Accuracy value is not appropriate

to evaluate the all-to-all PPI prediction with small positives and large negatives.

4.3 Results and Discussion

4.3.1 Screening of relevant interacting protein pairs by all-to-

all docking

Table 4.3 shows the performance of the PPI prediction with the small dataset. The

performance was improved by introducing the re-ranking process rather than using the

docking results alone. Moreover, the docking parameter (t = 3) that led to the best

performance had the F-measure value of 0.415 (Precision 0.447, Recall 0.386, Accuracy
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0.975). The performance of the application to the large dataset gave an F-measure value

of 0.231 (Precision 0.500, Recall 0.150, Accuracy 0.992) using this setting (t = 3) with

the PPI prediction parameter E∗ = 7.3. In related work of Yoshikawa et al. [24], they

used ZDOCK and their original post-docking process named affinity evaluation and

prediction (AEP). Yoshikawa et al. have shown the prediction performance of their

method as F-measure value of 0.063, Accuracy value of 0.902 on the 84 × 84 bound

dataset. Our result (F-measure value of 0.231 with 0.992 Accuracy on the 120 × 120

bound dataset) performed significantly better than theirs.

The receiver-operator characteristics (ROC) curve [85] with the large dataset and

this setting (t = 3) is shown in Fig. 4.2. The ROC curve is a plot of TP and FP

fractions and shows the trade-off between them. A completely random prediction

would lead to a diagonal line from the left-bottom to the top-right corners in the plot.

The points above the diagonal line represent the scenario that the prediction is better

than random. The ROC curve in Fig. 4.2 clearly shows that our method (magenta

line in Fig. 4.2 is better than random predictions. The green line in Fig. 4.2 shows the

result of MEGADOCK without using reranking method. Decoy reranking performed

to improve the prediction accuracy (we obtained the area under the ROC curve (AUC)

value of 0.824 with using reranking and 0.703 without using reranking). In addition,

our PPI decision performance was validated by using ZDOCK. The dashed line in

Fig. 4.2 represented the prediction results when we swapped MEGADOCK docking

engine for ZDOCK 3.0. As a result, the reranking method also performed to improve

the prediction accuracy if we used ZDOCK (AUC value of 0.796 with using reranking

and 0.772 without using reranking). To evaluate the improvements by introducing

ZRANK, we used another dataset derived from dockground 3.0 benchmark data [86].

Table 4.4 shows our dataset which is a subset of dockground 3.0; the subset consists

of only monomer protein pairs. The ROC curve with the dockground 3.0 dataset is

shown in Fig. 4.3. From these two ROC curves, the effect of improvement by ZRANK

on ZDOCK is smaller than on MEGADOCK. One of the reasons is that the ZDOCK

scoring functions is more accurate than the MEGADOCK scoring functions.

Fig. 4.4 shows a heat map obtained from our PPI prediction method (t = 3). We

used the threshold value E∗ as 7.3, and the cells wherein the corresponding pair was

predicted as positive are colored red. The TPs are those on the diagonal cell with red

values, FN are green squares on the diagonal line and FPs are high scoring squares off

of the diagonal.
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Table 4.3: Results of 44× 44 protein–protein interaction predictions

Decoys recorded per rotation t 1 2 3 5 10 20

Predictions without reranking Precision 0.563 0.435 0.474 0.429 0.409 0.450
Recall 0.205 0.227 0.205 0.205 0.205 0.205

F-measure 0.300 0.299 0.286 0.277 0.273 0.281

Predictions with reranking Precision - 0.375 0.447 0.320 0.347 0.318
Recall - 0.409 0.386 0.364 0.386 0.318

F-measure - 0.391 0.415 0.340 0.366 0.318
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Figure 4.2: Evaluation of the docking post-processing system (large dataset, t = 3).
The ROC curves for varying the threshold E∗ values are shown. The x-axis repre-
sents the false-positive fraction (#FP/(#FP+#TN)) and the y-axis represents the
true-positive fraction (#TP/(#TP+#FN)). Random predictions are indicated by the
diagonal.
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Table 4.4: The selected 102 complex structures from the dockground 3.0 benchmark
dataset

1A2X 1AGR 1ARO 1AVA 1AVW 1BND 1BRS 1BZQ
1C9P 1CGJ 1CSE 1CXZ 1D4X 1DF9 1DHK 1DKF
1DP5 1EAI 1EFU 1F02 1F5Q 1F7Z 1FFG 1FM9
1H59 1I8L 1IAR 1JTD 1JTP 1K8R 1K93 1KPS
1KTK 1KU6 1L4D 1M27 1MA9 1MBX 1MR1 1MZW
1NMU 1NPE 1NU9 1OIU 1P9M 1PPF 1QAV 1QBK
1R1K 1RZR 1S3S 1SGP 1SHW 1SQ0 1SQ2 1STF
1TA3 1TE1 1TK5 1TX4 1U0S 1U7E 1UEA 1UJW
1UL1 1UUZ 1UZX 1V5I 1W98 1WPX 1WR6 1WRD
1X86 1XDT 1Z3G 1Z92 1ZLH 1ZM2 2A19 2A41
2A42 2A5D 2AUH 2B12 2B3T 2B5I 2BH1 2BKH
2BKK 2C1M 2C5D 2GY7 2HDI 2IW5 2J0M 2JB0
2OMZ 2P8W 2PAV 3BP5 3SIC 3YGS
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Figure 4.3: Evaluation of the docking post-processing system (dockground 3.0 dataset,
t = 3). The ROC curves for varying the threshold E∗ values are shown. The x-axis
represents the false-positive fraction (#FP/(#FP+#TN)) and the y-axis represents
the true-positive fraction (#TP/(#TP+#FN)). Random predictions are indicated by
the diagonal.
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Figure 4.4: 120 × 120 map of protein–protein interaction prediction results. The red
cells are those for which E is more than E∗(= 7.3).
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4.3.2 Toward developing a method applicable to unbound

data

We also conducted all-to-all docking and PPI predictions to the unbound 120 ×
120 large dataset. The performance of the application to this dataset gave an F-

measure value of 0.0390 (Precision 0.0471, Recall 0.0333, Accuracy 0.981) with the

PPI prediction parameter E∗ = 6.3. In this result, the F-measure value was much

worse when compared to the bound large dataset, whereas it was slightly better than

the random prediction’s F-measure value of 0.0164. We conducted the same analysis

using ZDOCK but also failed to get a better F-measure value (0.0415).

This poor performance on application to unbound data is because of the high de-

pendence of our current method on the docking score function. It assumes that the

correct binding structure has significantly high scores when compared to the incorrect

docking forms. Nevertheless we should say from the results that such significance of

the docking score might be difficult to achieve with the unbound structures, because

the unbound structures are not expected to have exact shape complementarity, which

is expected in the re-docking of the bound structures.

To improve the PPI prediction of unbound structures, some additional analysis is

required such as: (i) including not only the best decoy’s score but also use a group of

highly ranked decoys to calculate E; and (ii) analyzing the distributions of the high

scoring decoys with respect to the interaction residues while improving the docking

score function.

Another promising approach to the PPI prediction using the unbound dataset is to

use cross docking using the ensemble structures. In unbound pair, shape complemen-

tarity based docking scores are not significantly high in high ranked decoys because the

receptor and ligand protein structures do not have the exact shape complementarity.

By sampling some possible structures of proteins and if successful, make a structure

that is closer to the bound form, the PPI prediction process can be improved. There

are some successful outcomes that uses ensemble docking and much efforts were put on

getting better structure sampling starting from unbound form of the proteins [87, 88].

As such efforts that try to eventually make unbound docking problems to similar prob-

lems to bound docking matures, out method can provide the link to the structural

docking to predicting possible binding pairs.

It should be noted that the datasets used contain much larger number of ‘False’ pairs

against ‘True’ pairs (14,280 False pairs and 120 True pairs). It makes difficult to achieve

high performance of PPI prediction. As an example of the application on smaller
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Table 4.5: Divided dataset located to the Nucleus subcellular location

PDBID UniprotID Subcellular location
1FQ1 r P24941 Cytoplasm, Nucleus, Cytoplasm, Endosome
1GXD r P08253 Secreted, Membrane, Nucleus
1H9D r Q03347 Nucleus
1I2M r P62826 Nucleus, Cytoplasm, Melanosome
1IBR r P62825 Nucleus, Cytoplasm, Melanosome
1S1Q r Q99816 Cytoplasm, Membrane, Nucleus, Late endosome membrane
1SYX r P83876 Nucleus
1ZHI r P54784 Nucleus
2OZA r Q16539 Cytoplasm, Nucleus
1ATN l P00639 Secreted, Nucleus envelope
1FQ1 l Q16667 Cytoplasm perinuclear region
1H9D l Q08024 Nucleus
1I2M l P18754 Nucleus, Cytoplasm
1IBR l Q14974 Cytoplasm, Nucleus envelope
1S1Q l P0CG48 Cytoplasm, Nucleus
1XD3 l P0CG48 Cytoplasm, Nucleus
1ZHI l P21691 Nucleus, Chromosome
2AYO l P0CG48 Cytoplasm, Nucleus
2OOB l P0CH28 Cytoplasm, Nucleus
2OZA l P49137 Cytoplasm, Nucleus

dataset we tried dividing our data according to the subcellular location information

obtained from Uniprot database (Table 4.5–4.7). The performance of our method was

varied according to the sub-datasets. While we did not see major improvement in the

case of nucleus data (Fig. 4.5), higher F-measure value was observed in other cases of

mitochondrion (Fig. 4.6) and Golgi apparatus (Fig. 4.7). Although our method aims

at primary screening of PPI from large protein structure data, we think that we can

improve the performance of our method using additional feature information.

4.4 Summary

In this chapter, we describe here the development of an exhaustive PPI screening

system called “MEGADOCK” that conducts docking and post-analysis on protein

tertiary structural data. For the detection of the relevant interacting protein pairs, we

obtained an F-measure value of 0.231 when our method was applied to a subset of a
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Table 4.6: Divided dataset located to the Mitochondrion subcellular location

PDBID UniprotID Subcellular location
1E6E r P08165 Mitochondrion matrix
1JK9 r P40202 Cytoplasm, Mitochondrion intermembrane space
2PCC r P00431 Mitochondrion matrix
1E6E l P00257 Mitochondrion matrix
1JK9 l P00445 Cytoplasm, Mitochondrion intermembrane space
2C0L l O62742 Cytoplasm, Mitochondrion, Peroxisome
2PCC l P00044 Mitochondrion intermembrane space

Table 4.7: Divided dataset located to the Golgi apparatus subcellular location

PDBID UniprotID Subcellular location
1HE8 r P01112 Cell membrane, Golgi apparatus, Golgi apparatus membrane
1R8S r P84077 Golgi apparatus, Cytoplasm
1WQ1 r P01112 Cell membrane, Golgi apparatus, Golgi apparatus membrane
2AJF r Q9BYF1 Processed angiotensin-converting enzyme,

Secreted, Cell membrane
2CFH r O43617 Golgi apparatus, Endoplasmic reticulum
2G77 r Q08484 Golgi apparatus
2OT3 r Q9UL25 Endoplasmic reticulum membrane, Golgi apparatus membrane,

Early endosome membrane, Cytoplasmic vesicle membrane,
Cleavage furrow

1J2J l Q9UJY5 Golgi apparatus, Endosome membrane
2AJF l P59594 Virion membrane, Host endoplasmic reticulum-Golgi

intermediate compartment membrane, Host cell membrane
2CFH l Q86SZ2 Golgi apparatus, Endoplasmic reticulum
2G77 l O35963 Golgi apparatus membrane
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TP=1FP=25FN=6F-measure=0.080
1ATN 1FQ1 1H9D 1I2M 1IBR 1S1Q 1XD3 1ZHI 2AYO 2OOB 2OZA1FQ1 * * * *1GXD * * * *1H9D * * * * *1I2M * *1IBR * *1S1Q * *1SYX *1ZHI * * * *2OZA

 Ligand
Receptor

Figure 4.5: Result of the PPI predictions with nucleus sub-dataset. The interactions
estimated as positive are marked with asterisks. The gray colored cells correspond to
the known interactions.

TP=2FP=1FN=1F-measure=0.6671E6E 1JK9 2C0L 2PCC1E6E * *1JK9 *2PCCReceptor
Ligand

Figure 4.6: Result of the PPI predictions with mitochondrion sub-dataset. The interac-
tions estimated as positive are marked with asterisks. The gray colored cells correspond
to the known interactions.
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TP=2FP=4FN=1F-measure=0.444
1J2J 2AJF 2CFH 2G771HE81R8S1WQ12AJF *2CFH * *2G77 * *2OT3 *

Ligand 
Receptor

Figure 4.7: Result of the PPI predictions with Golgi apparatus sub-dataset. The
interactions estimated as positive are marked with asterisks. The gray colored cells
correspond to the known interactions.

general benchmark dataset.

Our future work will include the quantitative representation of the reliability of the

prediction for each detected PPI. Moreover, we believe that integrating our prediction

approach into conventional bioinformatics methods, such as those based on nucleotide

sequencing should be useful.





Chapter 5

Application to Bacterial

Chemotaxis Pathway Analysis

5.1 Introduction

Enteric bacteria like Escherichia coli control their locomotion by sensing changes

of chemicals in the environment to move to more nutrient-rich areas and away from

harmful conditions—the phenomenon called chemotaxis. Cell motility and chemotaxis

are essential for the pathogenicity of many pathogenic bacteria, which must swim

toward host cells to invade them [89]. In addition, bacteria protect themselves from

phagocytosis by inhibiting host cell chemotaxis [90].

The bacterial chemotaxis pathway has been studied for several decades and most

of the functional relationships among the proteins involved in this signal process have

been identified especially those involving the core part of the signaling system [92, 93]

(Fig. 5.1, Table 5.1). However there are still uncertainties concerning how flagellar mo-

tor proteins are assembled and operate (reviewed in [94]). Recent simulation studies

with dynamic models and molecular imaging studies have suggested possible mecha-

nisms for signal amplification and robustly accurate adaptation [95, 96, 97].

In this chapter we applied MEGADOCK to a pathway reconstruction problem of

bacterial chemotaxis. Pathway reconstruction is a major goal of large-scale PPI pre-

diction but currently there are only a few assessment studies testing the ability of the

method to reconstruct an actual biological pathway. To further demonstrate its po-

tential, we evaluated our PPI prediction system by applying it to the data from a real

biological pathway. A small, well-studied pathway of bacterial chemotaxis was chosen

as the system to reconstruct.

69
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The MEGADOCK to computational PPI detection is a promising methodology for

mediating between structural studies and systems biology by utilizing cumulative pro-

tein structure data for pathway analysis.
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Figure 5.1: Chemotaxis pathway for E. coli (above) and T. maritima (below). The
motion of these bacteria are controlled by the rotation direction of their flagellar motor.
The phosphorylation state of CheY is responsible for the rotation direction. When the
receptors (Methyl-accepting Chemotaxis Proteins, MCP) sense favorable signals such
as those indicating nutrition molecules in the environment, CheA autophosphorylation
is inhibited. Then the phosphorylation level of CheY will be reduced because of the
repression of phosphotransfer from CheA. That low phosphorylation level of CheY
reduces its affinity to the flagellar motor, which causes more frequent counterclockwise
rotation and longer periods of smooth swimming of the cell. In addition, the stimulated
receptors also undergo a gradual change in the methylation level controlled by CheR
and CheB. That causes adaptation to the signal. The MCP family comprises Tar, Tsr,
Trg, Tap and Aer, each of which senses distinct signals.
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5.2 Materials and Methods

5.2.1 Collection of protein structural data

We selected the well characterized species E. coli, S. typhimurium and T. maritima

as the targets for this study of bacterial chemotaxis.

The following procedures were performed to retrieve the data: get the PDB ID

list that corresponded to the proteins in the bacterial chemotaxis pathway (Ta-

ble 5.2). Pathway data were obtained from KEGG [98] (KEGG pathway ID: eco02030,

stm020230, tma02030 for each species). PDB IDs were obtained through LinkDB [99].

The collected protein structure files were prescreened according to the following

criteria, as in the recently published protein–protein docking benchmark version 3.0 [81]

(Table 5.2):

1. Experimental method: X-ray diffraction, resolution better than 3.25 Å,

2. Polypeptides consisting of more than 30 residues.

In principle, mutant data and synthetic objects were excluded with the one exception

of CheZ, for which only mutant data was available (Table 5.2). Structure data for only

the ligand binding domain of the membrane proteins, which is located in the periplasm,

were also excluded. The protein structure data used in this study is shown in Table 5.2.

5.2.2 Known PPI information

Relevant PPIs are defined based on published data [100, 101, 102, 103, 104]. The

interactions of short form CheA [105] were not considered because its structure was un-

available. In addition, interactions based on genetic observations alone were excluded.

FliG, FliM and FliN were considered as binding to the protein species because they

make solid flagellar motor machinery. For in vitro studies, large numbers of interactions

are listed in public databases such as the STRING database [106]. However, these data

sets were not included in this study because the physical interactions for those PPIs

are not characterized.

5.2.3 PPI prediction

We conducted all-to-all PPI prediction by using MEGADOCK with the PDB struc-

tures in Table 5.2. Each PDB file was divided into data for each polypeptide chain,

which for most cases in this dataset, corresponded to a single protein species.
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Table 5.2: Chemotaxis dataset derived from PDB.

PDB ID Chain Organism Molecule Domain
1FFG B,D E. coli CheA P2
1FFS B,D E. coli CheA P2
1FFW B,D E. coli CheA P2
1A0O A,C,E,G E. coli CheY
1BDJ A E. coli CheY
1CHN A E. coli CheY
1F4V A,B,C E. coli CheY
1FFG A,C E. coli CheY
1FFS A,C E. coli CheY
1FFW A,C E. coli CheY
1FQW A,B E. coli CheY
1HEY A E. coli CheY
1JBE A E. coli CheY
1KMI Y E. coli CheY
1ZDM A,B E. coli CheY
2B1J A,B E. coli CheY
3CHY A E. coli CheY
1KMI† Z E. coli CheZ
1QU7 B E. coli MCP(Tsr) Cytoplasmic domain
1I5N A,B,C,D S. typhimurium CheA P1
1A2O A,B S. typhimurium CheB
1CHD A S. typhimurium CheB C-terminal catalytic domain
1AF7 A S. typhimurium CheR
1BC5 A S. typhimurium CheR
2CHE A S. typhimurium CheY
2CHF A S. typhimurium CheY
2FKA A S. typhimurium CheY
2FLK A S. typhimurium CheY
2FLW A S. typhimurium CheY
2FMF A S. typhimurium CheY
2FMH A S. typhimurium CheY
2FMI A S. typhimurium CheY
2FMK A S. typhimurium CheY
2PL9 A,B,C S. typhimurium CheY
2PMC A,B,C,D S. typhimurium CheY
1TQG A T. maritima CheA P1
1U0S A T. maritima CheA P2
2CH4 A,B T. maritima CheA P4, P5 (Residues 355–671)
1XKR A T. maritima CheC
2F9Z A,B T. maritima CheC
2F9Z C,D T. maritima CheD
2CH4 W,Y T. maritima CheW
1SQU A,B T. maritima CheX
1XKO A,B T. maritima CheX
1TMY A T. maritima CheY
1U0S Y T. maritima CheY
2TMY A T. maritima CheY
3TMY A,B T. maritima CheY
4TMY A,B T. maritima CheY
1LKV X T. maritima FliG C-terminal domain (Residues 104–335)
1QC7 A,B T. maritima FliG C-terminal domain
2HP7 A T. maritima FliM CheC-like domain
1O6A A,B T. maritima FliN C-terminal domain (Residues 59–154)
1YAB A,B T. maritima FliN Residues 68–154
2CH7 A,B T. maritima MCP Cytoplasmic domain

Note: CheA comprises five domains: P1 (Histidine phosphotransfer domain), P2 (Re-
sponse regulator binding domain), P3 (Histidine kinase-like homodimeric domain), P4
(Histidine kinase-like ATPases) and P5 (Receptor coupling domain). † Includes a mu-
tation in residue 134 (Glu → Lys).
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For the chemotaxis pathway we often obtained more than one structural data element

for a protein species. In such a case we calculated affinity scores using all the data we

had. When we found at least one positive evaluation between relevant protein pairs,

we evaluated the pair as interacting.

5.3 Results

5.3.1 PPI detection performance

Fig. 5.2 shows the ROC curve for varying the threshold E∗ values and Fig. 5.3 and

Table 5.3 show PPI detection for the chemotaxis dataset with E∗ = 7.3. This parameter

is the same as those that produced the best F-measure value for the benchmark data.

Gray-colored cells indicate the protein pairs known to interact with each other. We

obtained an E-measure of 0.464 for this system, which is similar to that found in the

previous study using ZDOCK 3.0 by Matsuzaki et al. [23].

5.3.2 Predicted interactions

The “false-positive” interactions include some interactions that are not possible,

considering the localization of the proteins, such as the interaction between flagellar

motor proteins and receptor proteins. Precluding these apparently false detections, we

can restrict the “false-positive” interactions to those that are worth further analysis.

One of the suggestions of currently unknown PPI, CheY–CheD, is shown in Fig. 5.4.

5.4 Discussion

Although a primary purpose of this study was the assessment of the computational

PPI screening performance on the real biological pathway, some “false-positive” inter-

actions detected in the chemotaxis pathway seemed to be worth further analysis.

One such interaction was CheY–CheD. CheC is known as a phosphatase of CheY.

CheC activity is known to be enhanced by the existence of CheD [104, 107]. Although

interactions between CheY–CheC, CheC–CheD are already known [107, 108], no evi-

dence for direct binding of CheY–CheD has been found until now. Still, seeking the

possibility of this direct interaction might be interesting.

In the complex form, CheC is in active state and CheD is inactivated. Chao et

al. have suggested a mechanism by which MCP and phosphorylated CheY (CheYp)
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Figure 5.3: Results of the PPI predictions from the proposed system with E∗ = 7.3.
The red bold lines (true positives), blue dashed lines (false negatives) and thin lines
(false positives) representing the predicted or known PPIs show the relevance of the
predictions.

Table 5.3: Results of the PPI predictions using the proposed system with E∗ = 7.3.
The interactions estimated as positive are marked with asterisks. The gray colored
cells correspond to the known interactions.

A B C D R W X Y Z FliG FliM FliN Tsr

CheA - - - - - - - - - - - -

CheB ∗ - - - - - - - - - - -

CheC ∗ - - - - - - - - - -

CheD ∗ ∗ - - - - - - - - -

CheR - - - - - - - -

CheW ∗ ∗ ∗ - - - - - - -

CheX ∗ ∗ ∗ - - - - - -

CheY ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ - - - - -

CheZ ∗ ∗ ∗ ∗ - - - -

FliG ∗ ∗ ∗ ∗ - - -

FliM ∗ - -

FliN ∗ ∗ ∗ -

Tsr ∗ ∗ ∗ ∗ ∗
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competitively control the free CheD availability through CheC-CheD complex [109].

When CheY phosphorylation level is high, it increases CheC-CheD complex and thus

reduces CheD interaction with MCP molecules. Assuming that it actually occurs in the

living cell, the mechanism may include a direct interaction between CheY and CheD.

The fact that CheC activity increases when CheD is present can also be explained

by a model in which CheD first binds to CheY and then recruits CheC to lead to the

correct binding pose with CheY. Fig. 5.4 shows a hypothetical CheY–CheD complex

and CheC docking. In this preliminary result we couldn’t determine whether the CheC

and the CheY phosphorylation site were in close proximity. To seek the possibility of

unknown PPIs, we need to exhaustively search the space of high scoring docking decoys

of the protein pairs under consideration.

To further investigate the possibility of the detected but currently unknown inter-

actions, validation by experiment is crucially important. It would be interesting to

restrict the targets by further expensive calculations involving surface electric charge

or interaction surface analysis and thereby obtain some strongly possible interactions

for experimental validation. It would also be interesting to obtain the crystal struc-

ture of the CheY–CheC–CheD complex and see if we find similar structure in the

hypothetical docking decoys.

5.5 Summary

In this chapter, we applied an all-to-all PPI prediction system, MEGADOCK, to

bacterial chemotaxis pathway reconstruction problem. The results showed better per-

formance when compared to those from previous research and random predictions. The

proposed PPI detection method will enable the large scale PPI screening that is useful

to restrict the search space before utilizing expensive PPI analysis methods.

Among the predicted PPIs for the chemotaxis proteins, we discussed an example of

an unknown interaction (CheY–CheD) that is worthy of further analysis. Validation

after the PPI screening is a problem to be explored in future research, as well as seeking

to improve prediction performance.
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Figure 5.4: (a) Known structure of the CheC–CheD complex (PDB ID: 2F9Z, chains
A, C). (b) Docking of CheY (PDB ID: 1A0O, chain C)–CheD (PDB ID: 2F9Z, chain C)
hypothetical complex and CheC (PDB ID: 1XKR, chain A). The phosphorylation site of
CheY is colored red. The hypothetical complex was constructed from the representative
data with the highest E value among all combinations of CheY–CheD docking and
clustering results. The docking prediction with the highest E value among all the
combinations of the hypothetical complex and CheC structure data is shown. (c)
Docking of a known structure of the CheC–CheD complex (PDB ID: 2F9Z, chains A,
C) and CheY (PDB ID: 1F4V, chain C). The phosphorylation site of CheY is colored
red. This hypothetical complex is also constructed using the representative data among
all combinations of the CheC–CheD complexes and CheY structures.





Chapter 6

Application to Human Apoptosis

Pathway Analysis

6.1 Introduction

Apoptosis is the process of programmed cell death that may occur in multicellular

organisms; that is, cells committing suicide by activating an intracellular death pro-

gram; getting engulfed and digested by macrophages without harming their neighbors.

Apoptosis helps in regulation of cell number and size, such as the differentiation of

fingers in a developing embryo by the programmed death of cells between them; or

removal of infected or damaged cells. Apoptotic processes are regulated by extrinsic

and intrinsic pathways [110] (Fig. 6.1).

In this chapter, we applied MEGADOCK to a pathway reconstruction problem of

human apoptosis as larger problem than bacterial chemotaxis pathway (Chapter 5).

In addition, we aim to predict the structures of the complexes formed by interacting

protein pairs in the apoptosis pathway by using the MEGADOCK and to figure out

the implications of the newly obtained interactions.

81
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6.1.1 Summary of the human apoptosis

Apoptosis is involved in the pathogenesis of many diseases. If the cells fail to un-

dergo apoptosis, an uncontrolled proliferation rate can cause diseases such as cancer,

autoimmune diseases and viral infections. In contrast, accelerated rates of apoptosis

may cause diseases that are related to cell loss, such as AIDS (acquired immunodefi-

ciency syndrome), neurodegenerative diseases, ischemic injury and toxin-induced liver

disease. It is crucial to know the details of the apoptosis signaling pathway, especially

structural details of protein–protein interactions, in order to identify targets and design

drugs [111].

Central players in signal transduction in both the extrinsic and intrinsic pathways are

the caspases (cysteine-dependent aspartate-directed proteases). Caspases are members

of the protease family, which are synthesized as inactive precursors or procaspases.

Procaspases are activated by proteolytic cleavage by other members of their family in

response to inducing signals. Once they are activated and become caspases, they can

activate other procaspases by cleaving them. In this manner, initiator caspases, such

as caspase-8, -9 become activated and cleave the inactive effector caspases, such as

caspase-3, -6 and -7.

The extrinsic pathway is mediated by the death receptors such as TNF-R, Fas and

TRAIL-R. Initiator caspases are activated by the death receptors with death domain-

containing adaptor molecules such as FADD. The DISC complex composed TRAIL-R,

FADD, caspase-8 and FLIP activates a signaling cascade [112].

On the other hand, the intrinsic pathway is initiated by stress signals, such as UV-

irradiation, γ-irradiation, DNA damage, and genotoxic stress, causing cytochrome C

(CytC) release from the mitochondria. Released CytC binds to apoptotic protease

activating factor 1 (Apaf-1) to form the apoptosome and activate initiator caspase,

which activates the executioner caspases [113].

Thus, the different players work in the extrinsic and intrinsic pathways of apoptosis.

However, the apoptosis pathways observed to cross-talk via caspase-8, which leads to

the initiation of the intrinsic pathway by activating the BID protein and the release

of CytC from the mitochondria, in addition to its role of activating caspase-3 and

triggering apoptosis in the extrinsic pathway (Fig. 6.1).
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Table 6.1: PDB IDs of human apoptosis pathway protein from hsa04210 KEGG path-
way (124).

1A0N 1A1W 1A8M 1AIE 1AUI 1CY5 1CZZ 1D00 1D4V 1DG6
1DU3 1E8Y 1EGJ 1EXT 1F16 1F1J 1F3V 1G73 1H9O 1HE7
1I4O 1I51 1IBX 1ICH 1IKN 1ITB 1IYR 1J3S 1JLI 1JXQ
1KFU 1M6I 1MF8 1MRV 1NFI 1NW9 1O6K 1O6L 1OLG 1P6S
1PBW 1QTN 1RHQ 1SHC 1SVC 1UNQ 1WWW 1XQH 1YC5 1Z6T
1ZCM 2B3G 2B48 2BEC 2BID 2DBF 2DKO 2E30 2ECG 2ENQ
2FOO 2FUN 2G5B 2GF5 2GS0 2IFG 2ILA 2IUG 2IZX 2J32
2JS7 2JVX 2K8F 2KBW 2KNA 2KT1 2NQA 2NRU 2NVH 2POI
2QL9 2R28 2UVL 2V1Y 2VUK 2W3L 2WDP 2X18 2XA0 2XS6
2YGS 3AGM 3BRT 3BRV 3CL3 3CM7 3CQW 3D06 3D9T 3DAB
3EB5 3EB6 3EWT 3EZQ 3FDL 3FX0 3H11 3HHM 3I5R 3IZA
3KNV 3LL8 3LW1 3M0A 3M0D 3M1D 3MOP 3MTT 3MUP 3O4O
3O96 3PK1 3YGS 4TSV

6.2 Materials and Methods

6.2.1 Dataset

In this study, we focused on the human apoptosis signaling pathway previously an-

alyzed by PRISM [14] because our prediction results can thus be compared directly

to the results of the previous study. PRISM and MEGADOCK are based on three-

dimensional protein structures and therefore can only be applied to proteins whose

tertiary structures are available. Therefore, we searched among proteins involved in

the human apoptosis pathway that were present in the Protein Data Bank (PDB)

(accessed on July 28, 2012). We selected several proteins that had the highest res-

olution for the structural group that had high sequence similarity (> 0.9) with the

other proteins in the dataset [114]. After filtering according to resolution and sequence

similarity, we obtained 158 PDB structures that corresponded to 57 proteins in the

human apoptosis pathway described in KEGG (KEGG pathway ID: hsa04210) [98].

The PDB IDs in this structure dataset were the same as those used by Ozbabacan et

al. [114]. Table 6.1 shows the list of PDB IDs of human apoptosis pathway proteins

from hsa04210 KEGG pathway and Table 6.2 shows the list of protein names with

PDB chains of this dataset.
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Table 6.2: PDB chains of human apoptosis pathway protein from hsa04210 KEGG
pathway (158 chains). The first 4 characters before ‘ ’ represent PDB ID and the last
1 character after ‘ ’ represents chain name.

Name PDB ID chain

AIF 1M6I A
AKT1 1UNQ A, 3CQW A, 3O96 A
AKT2 1MRV A, 1O6K A, 1O6L A, 1P6S A
AKT3 2X18 A
APAF1 1CY5 A, 1Z6T A, 2YGS A, 3IZA A, 3YGS C
Bax 1F16 A, 2G5B I, 2XA0 C, 3PK1 B

BCL-2 2W3L A, 2XA0 A
BCL-XL 2B48 A, 3FDL A
BID 2BID A, 2KBW B

Calpain1 1ZCM A
Calpain2 1KFU L, 2NQA A
CASP3 1RHQ A, 1RHQ B, 2DKO A, 2DKO B, 2J32 A
CASP6 2WDP A
CASP7 1F1J A, 1I4O A, 1I51 A, 1I51 B, 2QL9 A, 2QL9 B
CASP8 1QTN A, 1QTN B, 2FUN B, 3H11 B
CASP9 1JXQ A, 1NW9 B, 3D9T C, 3YGS P
Cn(CHP) 2E30 A
Cn(CHP2) 2BEC A

Cn(PPP3CA) 1AUI A, 1MF8 A, 2R28 C, 3LL8 A
Cn(PPP3R1) 1AUI B, 1MF8 B, 3LL8 B

CytC 1J3S A
DFF40 1IBX A
DFF45 1IBX B, 1IYR A
FADD 1A1W A, 2GF5 A, 3EZQ B
Fas 3EWT E, 3EZQ A
FLIP 3H11 A

IAP(BIRC2) 3D9T A, 3M1D A, 3MUP A
IAP(BIRC3) 2UVL A, 3EB5 A, 3EB6 A, 3M0A D, 3M0D D
IAP(BIRC4) 1G73 C, 1I4O C, 1I51 E, 1NW9 A, 2ECG A,

2KNA A, 2POI A, 3CM7 C
IκBα 1IKN D, 1NFI E
IKK 2JVX A, 3BRT B, 3BRV B, 3CL3 D, 3FX0 A

IL-1(A) 2ILA A
IL-1(B) 1ITB A, 2NVH A, 3O4O A
IL-1R(1) 1ITB B

IL-1R(RAP) 3O4O B
IL-3 1JLI A
IL-3R 1EGJ A
IRAK2 3MOP K
IRAK4 2NRU A, 3MOP G
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Table 6.2 (continue)
Name PDB ID chain

MyD88 2JS7 A, 3MOP A
NF-κB(NFKB1) 1IKN C, 1NFI B, 1SVC P, 2DBF A
NF-κB(RELA) 1IKN A, 1NFI A

NGF 1WWW V, 2IFG E
PI3K(PIK3CA) 2ENQ A, 2V1Y A, 3HHM A
PI3K(PIK3CG) 1E8Y A
PI3K(PIK3R1) 1A0N A, 1H9O A, 1PBW A, 2IUG A, 2V1Y B,

3HHM B, 3I5R A
PI3K(PIK3R2) 2KT1 A, 2XS6 A, 3MTT A

PRKACA 3AGM A
PRKAR2A 2IZX A

TNFα 1A8M A, 4TSV A
TNF-R1 1EXT A, 1ICH A
TP53 1AIE A, 1OLG A, 1XQH B, 1YC5 B, 2B3G B, 2FOO B,

2GS0 B, 2K8F B, 2VUK A, 3D06 A, 3DAB B, 3LW1 P
TRADD 1F3V A
TRAF2 1CZZ A, 1D00 A, 1F3V B, 3KNV A, 3M0A A, 3M0D A
TRAIL 1D4V B, 1DG6 A, 1DU3 D

TRAIL-R 1D4V A, 1DU3 A
TrkA 1HE7 A, 1SHC B, 1WWW X, 2IFG A

Note: The abbreviations used are: AIF, apoptosis-inducing factor, mitochondrion-associated, 1 (AIFM1); AKT1,

RACalpha serine/threonine-protein kinase; AKT2, RAC-beta serine/threonine-protein kinase; AKT3, RAC-gamma

serine/threonine-protein kinase; APAF1, apoptotic peptidase activating factor 1; BCL-2, B-cell lymphoma 2; BCL-XL,

BCL extra-large; BID, BH3 interacting domain death agonist; Bax, BCL-2-associated X protein; CASP3/6/7/8/9,

caspase-3/6/7/8/9; Cn(CHP), calcineurin B homologous protein 1; Cn(CHP2), calcineurin B homologous protein 2;

Cn(PPP3CA), protein phosphatase 3 catalytic subunit alpha isoform; Cn(PPP3R1), protein phosphatase 3 regulatory

subunit 1; CytC, cytochrome C; DFF40, DNA fragmentation factor, 40kDa, beta polypeptide; DFF45, DNA fragmenta-

tion factor, 45kDa, alpha polypeptide; FADD, Fas-associated via death domain; FLIP, FLICE/CASP8 inhibitory protein

(CASP8 and FADD-like apoptosis regulator, CFLAR); Fas, tumor necrosis factor receptor (TNF) superfamily member 6;

IAP, inhibitor of apoptosis; BIRC2/3/4, baculoviral IAP repeat-containing protein 2/3/4; IκBα, nuclear factor of kappa

light polypeptide gene enhancer in B-cells inhibitor alpha; IKK, inhibitor of nuclear factor kappa-B kinase; IL-1(A),

interleukin-1 alpha; IL-1(B), interleukin-1 beta; IL-1R(1), type 1 interleukin-1 receptor; IL- 1R(RAP), interleukin-1 re-

ceptor accessory protein; IL-3, interleukin-3; IL-3R, interleukin-3 receptor; IRAK2/4, interleukin-1 receptor-associated

kinase 2/4; MyD88, myeloid differentiation primary response protein MyD88; NF-κB(NFKB1), nuclear factor of kappa

light polypeptide gene enhancer in B-cells; NF-κB(RELA), nuclear factor of kappa light polypeptide gene enhancer in

B-cells 3; NGF, nerve growth factor (beta polypeptide); PI3K, phosphatidylinositide 3-kinase; PIK3CA, PI3K subunit al-

pha; PIK3CG, PI3K subunit gamma; PIK3R1, PI3K regulatory subunit alpha; PIK3R2, PI3K regulatory subunit beta;

PRKACA, cyclic adenosine monophosphate (cAMP)-dependent protein kinase catalytic subunit alpha; PRKAR2A,

cAMP-dependent protein kinase type II-alpha regulatory subunit; TNFα, tumor necrosis factor; TNF-R1, TNF recep-

tor superfamily member 1A; TP53, cellular tumor antigen p53; TRADD, TNF receptor type 1-associated death domain

protein; TRAF2, TNF receptor-associated factor 2; TRAIL, TNF receptor superfamily member 10; TRAIL-R, TNF

receptor superfamily member 10B; TrkA, neurotrophic tyrosine kinase receptor type 1.
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6.2.2 Known PPI information

Known PPIs were collected from the STRING database [106]. We used only exper-

imental data in the literature obtained from STRING with a confidence score > 0.5.

The number of known PPIs was 137. Because the database does not contain existing

self-interactions, we did not predict self-interactions. Thus, the number of target pairs

was 57C2 = 1, 596.

In addition, we used another database provided by Dr. Vachiranee Limviphuvadh

(Agency for Science, Technology and Research; A*STAR) for the possibility of self-

interactions and the interactions which is not contained in STRING. The database

is called LIM DB in this thesis. LIM DB is integrated several PPI databases based

on literature information; BIND [115]，BioGRID [116]，DIP [117]，HPRD [118], Int-

Act [119], MINT [120], MPact [121] and MPPI [122].

When we evaluate by using LIM DB, a protein pair contained in one of STRING DB

and LIM DB as a positive sample and both are not contained as a negative sample.

Thus the number of target protein pairs is 57C2+57 = 1,653 and the number of positive

samples is 187.

6.2.3 PPI predictions

We conducted all-to-all PPI prediction by using MEGADOCK with the PDB struc-

tures in Table 6.2. For the apoptosis pathway we often obtained more than one struc-

tural data element for a protein species. In such a case we calculated affinity scores

using all the data we had. When we found at least one positive evaluation between

relevant protein pairs, we evaluated the pair as interacting same as the bacterial chemo-

taxis case (Chapter 5).

6.2.4 Evaluation of prediction performance

Here, we have defined #TP, #FP, #FN, #TN, precision, recall, and the F-measure,

which we used to evaluate the prediction results: #TP is the number of predicted PPIs

that were also found in database (true-positive), #FP is the number of predicted PPIs

that were not in database (false-positive), #FN is the number of PPIs not predicted

by the system even though the pair was found to interact in database (false-negative),

and #TN is the number of negative predictions that were also not found in database
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IAP(BIRC2) 3 1 3 1 3 1 1 3 3 3
IAP(BIRC3) 3 3 3 2 1 2 3
IAP(BIRC4) 1 3 3 2 3 3 1 3 2

IkBa 3 1 3 3 3 3 3
IKK 3 3 1 2 3 2 3

IL-1(A) 3 2 3
IL-1(B) 1 2 3

IL-1R(1) 3 3 3 2 2
IL-1R(RAP) 1 1

IL-3 2 3 3
IL-3R 3 2

IRAK2
IRAK4 1 3
MyD88 3 3 3 2

NF-kB(NFKB1) 3 3 2 2 2 3
NF-kB(RELA) 3 2 2 3

NGF 2 3
PI3K(PIK3CA) 3 2
PI3K(PIK3CG) 2
PI3K(PIK3R1) 3 3 2 1 2 2 3
PI3K(PIK3R2)

PRKACA 3 3 3 2
PRKAR2A 2 2

TNFa 1 2 3 1 1
TNF-R1 1 3 1 3 1 3 1 3 3 2 3 3 1

TP53 3 3 3 2 1 3 2
TRADD 1 3 3 3 2 1 3 2 3 3
TRAF2 3 3 3 3 3 1 3 3 2
TRAIL 3 3 2 3

TRAIL-R 1 3 3 1 3 1 3 3
TrkA 3 3 2

Figure 6.2: The PPIs from STRING DB and LIM DB. Colored cells show interacted
protein pairs. ‘1’ (blue) cells are from STRING DB, ‘2’ (red) cells are from LIM DB
and ‘3’ (green) cells are both from STRING DB and LIM DB.
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(true-negative). Precision, recall, and the F-measure are represented as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-measure =
2 · TP

2 · TP + FP + FN

where the F-measure is the harmonic mean of precision and recall. To identify new

PPIs in biological experiments after in silico screening, precision is more important

than recall to reduce the cost of validation.

6.3 Results and Discussion

6.3.1 PPI detection performance

Fig. 6.3 and Fig. 6.4 show the all prediction results of the human apoptosis pathway

by MEGADOCK. The accuracies of the results are shown in Table 6.3.

The prediction accuracy of MEGADOCK validated by STRING DB is F-measure =

0.220. This result is a less inferior for PRISM which is a template-base PPI prediction

tool developed by Tuncbag, et al. [14] and obtained F-measure = 0.296. However,

MEGADOCK obtained F-measure value of 0.277 when the results were validated by

STRING DB and LIM DB. Although the numbers of target pairs are different, the

prediction accuracy is close to the PRISM results.

In addition, the “MEGADOCKTP=56” column in Table 6.3 shows the MEGADOCK

results fixed the number of TPs with 56 validated by STRING DB. At this time, the

number of FPs of MEGADOCK is 1.8 times larger than PRISM. Practical use of the

template structure information by the complex co-crystal structures which PRISM uses

is considered to have contributed to reduction of the number of FPs. Fig. 6.5 shows

the ROC curve for varying the threshold E∗ values.
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AKT1 TN TN TN FP FP TN TN FP FN TN TN FP FN TN TN TN TN TN TN TN FP FP FP TN FP FP FP TP FP TN TN TN TN TN FP TN TN TN TN FP FP TN TN FP FN FP TN TN TN TN TN TN FP TN TN TN
AKT2 FP TN TN FP TN FP TN TN TP TN TN TN FP TN FP TN FP TN TN TN TN TN TN FP TN TN FP TP TN TN FP TN TN FP TN TN TN TN FP TN FP TN FP TN FP TN TN TN TN TN FP TN FP TN FP FP
AKT3 TN TN TN FP TN TN TN TN TP TN FP TN FP TN TN TN TN TN TN TN TN TN FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN

APAF1 TN FP FP FP TN TP TN FP TP FP FP TP TP TN TN TN TN TN TN TP TN TN TN TN FN TN FP FP FP TN TN TN FP TN TN TN TN TN TN FP FP FP TN FP FP TN TN FP TN FP FP TN FP TN TN TN
BCL-2 TN FP TN TN TN FN TP TP TP TN TN FN TN TN FN TN TN FN TP FN TN FP TN TN TN TN TN FP FP TN TN FP TN TN TN TN TN TN TN TN TN FP TN TN FP TN FN TN TN TN TP TN TN FP FP TN

BCL-XL FP TN FP TN TP FN TP TP TN FP FP FN TP FN TN FP TN FP TN FN TN TN TN FN TN FP FP TN FP TN TN TN TN TN TN TN TN TN TN FP TN FP TN TN TN TN TN TN TN TN TP TN FP FP TN FP
BID TN TN TN TN TN TP TP TP FN TN FP FN TN TP FN TN FP FP FP TN TN TN TP TN TP TN TN TN FP TN TN TN TN TN TN TN FP TN FP TN FP TN FP TN TN TN TN TN FN TN FP TN TN FP FN FP
Bax TN FP TN TN FP TP TP TP TN TN FP FP TN TN TN TN TN TN TN FP TN TN TN TN FP FP FP FP TN TN TN TN FP FP TN TN TN TN FP TN FP TN TN TN FP TN TN TN FP TN FP FP TN TN FP TN

CASP3 FN FN TP TP TP TP TN FN TN FN FP TP TP TN FP TN FP TP FP TN TN FN TN TP TN TP TP TP TN FP FP FP TN TN TN FP TN TN TN FP FP FP FP TN FP FP TN TN TN FP FP TN FP FP FP FP
CASP6 TN TN TN TN FP TN FP TN TN FN FP FN TN TN TN TN TN TN TN TN TN TN TN FN TN FN FP FP FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN FP TN TN
CASP7 FP TN TN FP FP TN FP FP FP FP FP TP TP FP FP TN FP TN FP FP TN FN FP FN FP TP TP TP TN TN FP TN TN TN TN TN TN FP FP FP FP FP FP TN FP FP FP TN TP FP FP FP FP FP TN FP
CASP8 TN FP TN TN TP FN FN FN FP TP FN TP TP TN TN TN FP FP TN TN TN FP TP TP FN FN FP TP FN TN TN TN TN TN TN TN TN TN FP TN TN FP TN TN FP TN TN TN TP TN FP FN TP TP FN FP
CASP9 TN FN FP FP TP TN TP TN TN TP TN TP TP TN FN TN TN TN FP FN TN TN TN TN TN TP TP TP TN TN TN TN FP TN TN FP TN FP TN TN TN TN TN TN FP FP TN TN TN FP TN TN FP FP TN TN

Calpain1 TN TN TN TN TN TN FN TP TN TN TN FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN FP TN TN FN FN TN TN TN TN TN TN FN TN TN TN FP TN TN TN TN TN TN TN TN FN TN TN TN TN TN
Calpain2 FP TN FP TN TN FN TN FN TN FP TN FP TN FN TN TN TN TN TN TN TN TN TN TN TN TN TN FP FP TN FP TN TN TN TN TN TN FN TN TN TN FP TN TN TN TN FP TN TN TN FP TN TN TN FP FP
Cn(CHP) TN TN TN TN TN TN FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN FP TN TN FP TN TN TN TN FP TN TN FP TN TN TN FP TN TN TN TN TN TN TN TN TN TN TN TN

Cn(CHP2) TN TN FP TN TN TN TN FP TN FP TN FP FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN FP TN TN TN TN FP TN TN TN TN TN TN FP TN FP FP TN TN TN FP TN TN TN TN TN TN TN TN TN
Cn(PPP3CA) TN TN TN TN TN FN FP FP TN TP TN TN FP TN TN TN TN TN FP TN TN TN FP TN TN FP FP TN TN FP FP FP TN TN TN TN FP FP FP TN TN FP FP FP TN TN TN TN TN TN FP TN FP FP TN FP
Cn(PPP3R1) TN TN TN TN TN TP TN FP TN FP TN FP TN FP TN TN TN TN FP FP FP TN TN TN TN TN TN FP FP TN FP TN TN TN TN TN TN FP TN FP TN TN FP TN TN TN TN TN FP TN FP TN FP TN TN FP

CytC TN TN TN TN TP FN FN TN FP TN TN FP TN FN TN TN TN TN TN FP TN TN FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN FP TN TN TN TN TN
DFF40 TN FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN FP TN FN TN TN TN TN TN TN TN TN TN TN TN FP TN TN TN TN FP TN TN TN FP TN FP TN TN TN TN TN TN TN TN TN TN FP
DFF45 TN FP TN TN TN FP TN TN TN FN TN FN FP TN TN TN TN TN TN TN TN FN TN TN TN FP TN TN TN TN TN TN TN TN TN TN TN TN TN FP TN FP FP TN FP TN FP TN TN TN TN TN TN TN TN TN
FADD TN FP TN FP TN TN TN TP TN TN TN FP TP TN TN TN TN TN FP TN FP TN TN FN TP TN TN FP TP FP TN TN TN TN TN TN TN TN FN TN TN FP FP TN TN TN TN FP FN TN FP FN FN TP TP TN

FLIP TN TN FP TN TN TN FN TN TN TP FN FN TP TN TN TN TN TN TN TN TN TN TN FN FN TN TN FP FP TN TN TN FP TN TN TN TN TN TN FN TN FP TN TN TN FP TN TN TN TN TP TN TP TN FN TN
Fas TN FP TN TN FN TN TN TP FP TN TN FP FN TN TN TN TN TN TN TN TN TN TN TP FN TN FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN FP TN FN TN FP FN TN FP FN TN

IAP(BIRC2) TN FP TN TN TN TN FP TN FP TP FN TP FN TP TN TN TN TN FP TN TN TN FP TN TN TN TN TN TP FP TN TN TN FP TN FP TN TN TN FP TN FP TN TN TN TN TN TN FN FN TN TP FN TN FP TN
IAP(BIRC3) TN FP FP TN FP TN FP TN FP TP FP TP FP TP FP TN TN TN FP TN TN TN TN TN TN FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN FP FP TN TN TN FP FP FP FN TN FP TN TP TN FP TN
IAP(BIRC4) FN TP TP TN FP FP TN TN FP TP FP TP TP TP TN FP TN FP TN FP TN TN TN FP FP TN TN TN FP TN FP FP FP TN FP FP TN FP FP FP TN TN FP FP FP FP TN TN FP TN FP FP FP FP FP FP

IKK TN FP TN TN FP FP FP FP TN TN FP TN FN TN TN FP FP TN TN FP TN TN TN TP FP TN TP TN FP TN TN TN TN FP TN TN FP FN FP FP FP TN TN TN FP TN TN TN FN TN FP FP FP FP TN FP
IL-1(A) TN TN TN TN TN TN TN TN TN FP TN TN TN TN FN TN TN TN FP TN TN TN TN FP TN TN FP TN TN TN TN FN FP TN TN TN TN TN TN TN TN TN FP TN FP TN TN TN TN TN FP TN TN FP TN TN
IL-1(B) TN TN FP TN TN TN TN TN TN FP TN FP TN TN FN FP TN TN FP FP TN TN TN TN TN TN TN TN FP TN TN TP TN TN TN TN FP TN TN TN TN TN TN FP FP TN TN TN TN TN FP TN TN TN FP TN

IL-1R(1) TN TN TN TN TN FP TN TN TN FP TN TN TN TN TN TN FP TN FP TN TN TN TN TN TN TN TN TN FP TN FN TP TN TN TN FP FP FP TP TN TN TN TN TN FP TN TN TN TN TN TN TN TN TN TN TN
IL-1R(RAP) TN TN TN TN FP TN TN TN FP TN TN TN TN FP TN TN TN FP TN TN TN TN TN TN FP TN TN TN FP TN FP TN TN TN TN TN FN FP TN TN TN TN TN TN TP TN TN TN TN TN FP TN TN TN TN TN

IL-3 TN TN FP TN TN TN TN TN FP TN TN TN TN TN TN TN TN TN TN TN TN FP TN TN TN TN FP TN TN FP TN TN TN TN FN TN TN TN TN FP TN TN FN TN TN FP TN TN TN FP TN TN FP TN TN TN
IL-3R TN FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN FP TN TN TN TN TN FN TN TN TN TN TN TN FP TN TN TN TN TN TN FP TN TN TN FP TN TN FP

IRAK2 TN TN TN TN TN TN TN TN TN FP TN TN TN FP TN TN TN TN TN TN TN TN TN TN TN TN FP TN FP TN TN TN FP TN TN TN TN TN TN FP TN TN TN TN TN TN TN TN TN TN TN TN FP TN TN TN
IRAK4 TN TN TN TN TN TN TN FP TN TN TN TN TN TN TN TN FP TN FP TN TN TN TN TN TN TN TN TN TN FP TN FP FP FN TN TN TN TN FN TN TN TN TN TN TN FP TN TN TN TN FP TN FP TN TN FP

IkBa TN TN TN TN TN TN TN TN TN TN TN FP TN FP FN FN TN TN FP FP TN TN TN TN TN TN TN TN FP FN TN TN FP FP TN TN TN TN TN FN FN TN FP TN FN TN TN TN TN TN TP TN TN TN TN FP
MyD88 TN TN FP TN TN TN TN FP FP TN TN FP FP TN TN TN TN TN FP TN TN FP TN FN TN TN TN TN FP FP TN TN TP TN TN TN TN FN TN TN TN TN TN TN TN TN TN TN TN TN FP TN TN TN TN FP

NF-kB(NFKB1) TN FP TN TN FP TN FP TN TN FP TN FP TN TN TN TN FP FP TN FP TN TN FP TN FN TN FP TN FP FP TN TN TN TN FP TN FP TN FN TN FP TN TN TN TN TN FN TN TN FP TN TN TN TN TN TN
NF-kB(RELA) TN FP FP TN FP TN TN FP FP FP TN FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN FP TN FP TN TN TN TN TN TN TN TN FN TN FP TN TN TN TN TN FN TN TN FP FP TN FP FP TN FP

NGF TN TN TN TN FP FP FP TN TN FP TN FP FP TN FP FP TN FP FP TN TN TN FP FP FP TN FP FP TN TN TN TN TN TN TN FP TN TN TN TN TN TN TN TN FP TN TN TN TN TN FP TN TN TN TN TP
PI3K(PIK3CA) TN TN FP TN TN TN TN FP TN FP TN FP TN TN TN TN TN FP FP FP TN FP FP FP TN TN TN TN FP TN FP TN TN TN FN TN TN TN FP TN TN TN TN FP FP TN TN TN TN TN FP TN FP TN TN FP
PI3K(PIK3CG) TN FP TN TN FP TN TN TN TN TN TN TN TN TN TN TN FP TN FP TN TN TN TN TN TN TN TN TN FP TN TN FP TN TN TN TN TN TN TN TN TN TN TN FP TN TN TN TN TN TN TN TN TN TN TN TN
PI3K(PIK3R1) FP FN FP TN FP FP TN TN FP FP TN FP FP FP TN TN TN TN TN TN TN FP FP TN TN TN TN TN FP FP FP FP FP TP TN TN TN TN FN TN TN TN FP FP TN FP TN TN FP FP FP FP FP FP TN TP
PI3K(PIK3R2) TN FP TN TN TN TN TN TN TN FP TN FP TN FP TN TN TN TN TN TN TN TN TN TN FP TN TN FP FP TN TN TN TN TN FP TN TN FP TN TN TN TN TN TN TN FP TN TN FP TN TN TN FP FP TN FP

PRKACA TN TN TN TN TN FN TN TN TN TN TN FP TN TN TN FP TN FP TN TN TN TN FP TN TN FP TN FP TN TN TN TN TN TN TN TN TN TN TN TN FN FN TN TN TN TN TN TN TN TN TN TN TN TN FP TN
PRKAR2A TN TN TN TN FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN FP TN TN TN FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN

TNF-R1 TN TN TN TN TN TN TN FN FP TN TN TP TP TN TN TN TN TN TN FP TN TN TN FN TN FN FN FN FP FN TN TN TN TN TN FP TN TN TN TN TN TN TN TN TN FP FP TN TN FN TN FN TP TN FN TN
TNFa TN TN TN TN FP TN TN TN TN FP TN FP TN FP TN TN TN TN TN TN TN TN TN TN TN TN FN TN TN TN TN TN TN TN FP TN TN TN TN TN FP FP TN TN TN FP TN TN TN FN FP FN FN TN TN FP
TP53 FP TN FP TN FP TP TP FP FP FP TN FP FP TN FN FP TN TN FP FP FP TN TN FP TP FP TN FP FP FP FP FP TN FP TN TN TN FP TP FP TN FP FP FP TN FP TN TN TN TN FP TN FP TN FP TN

TRADD TN TN TN TN TN TN TN TN FP TN TN FP FN TN TN TN TN TN TN TN TN TN TN FN TN FN TP TN FP FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN FP TN TN TN FN FN TN FN TN FN TN
TRAF2 TN FP FP TN FP TN FP TN TN FP TN FP TP FP TN TN TN TN FP FP TN TN TN FN TP TN FN TP FP FP TN TN TN TN FP FP FP FP TN TN TN FP TN FP TN FP FP TN TN TP FN FP FN FP TN TN
TRAIL FP TN TN TN TN FP FP FP TN FP FP FP TP FP TN TN TN TN FP TN TN TN TN TP TN FP TN TN FP FP FP TN TN TN TN TN TN TN TN TN TN FP TN TN TN FP FP TN TN TN TN TN TN FP TP FP

TRAIL-R TN TN FP TN TN FP TN FN FP FP TN TN FN TN TN FP TN TN TN TN TN TN TN TP FN FN FP FP FP TN TN FP TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN FP TN FN TN FP FN TN TP FP
TrkA FP TN FP TN TN TN FP FP TN FP TN FP FP TN TN FP TN TN FP FP TN FP TN TN TN TN TN TN FP FP TN TN TN TN TN FP TN FP FP FP TN FP TP FP TN TP FP TN TN TN FP TN TN TN FP FP

Figure 6.3: Predicted interactions by MEGADOCK. The green colored cells are true
positives, the red colored cells are false positives and the purple colored cells are false
negatives, validated by STRING database. The diagonal cells (black colored cells) are
self-interactions and are not prediction targets, because the STRING database does
not contain existing self-interactions.
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BCL-2 FP FN TP FN TP TP TP FN FN FN TP FN FP FP FP FP FP FP FN TP FP FP

BCL-XL FP FP TP FN TP TP TP FP FP FN TP FN FP FP FN FN FP FP FP FP FP TP FP FP FP
BID TP TP FN TP FN FP FN TP FN FP FP FP TP TP FP FP FP FP FP FN FP FP FN FP
Bax FP FP TP TP TP TP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP

CASP3 FN FN TP TP TP TP FN TP FN FP TP TP FP FP TP FP FN TP TP TP TP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP
CASP6 FP FP FN FP FP FN FN FN FP FP FP FP
CASP7 FP FP FP FP FP FP FP FP TP TP TP FP FP FP FP FP FN FP FN FP TP TP TP FP FP FP FP FP FP FP FP FP FP TP FP FP FP FP FP FP
CASP8 FP TP FN FN FN FP TP FN TP TP TP FP FP FP TP TP FN FN FP TP FN FP FP FP TP FP FN TP TP FN FP
CASP9 FN FP FP TP TP TP TP TP TP FN FP FN TP TP TP FP FP FP FP FP FP FP FP

Calpain1 FN TP FP FP FN FN FN FP FN
Calpain2 FP FP FN FN FP FP FN FP FP FP FP FN FP FP FP FP FP
Cn(CHP) FP FP FP FP FP FP FP

Cn(CHP2) FP FP FP FP FP FP FP FP FP FP FP
Cn(PPP3CA) FN FP FP TP FP TP TP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP
Cn(PPP3R1) TP FP FP FP FP TP FP FP FP FP FP FP FP FP FP FP FP FP

CytC TP FN FN FP FP FN FP FP FP
DFF40 FP FP FN FN FP FP FP FP FP
DFF45 FP FP FN FN FP FN FP FP FP FP FP FP
FADD FP FP TP FP TP FP FP FN FN TP FP TP FP FN FP FP FP FN TP FN FN TP TP

FLIP FP FN TP FN FN TP FN FN FN FP FP FP FN FP FP TP TP FN
Fas FP FN TP FP FP FN TP FN TP FP FP FN FP FN FP FN

IAP(BIRC2) FP FP FP TP FN TP FN TP FP FP TP FP FP FP FP FP FN FN TP FN FP
IAP(BIRC3) FP FP FP FP FP TP FP TP FP TP FP FP FP FP FN FP FP FP FP FP FN FP FN TP FP
IAP(BIRC4) FN TP TP TP FP FP TP FP TP TP TP FP FP FP FP FP TP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP

IKK FP FP FP FP FP FP FN FP FP FP TP FP TP FN FP TP FP FP FN FP FP FP FP FN FP FP FP FP FP
IL-1(A) FP FN FP FP FP FN FN FP FP FP FP FP
IL-1(B) FP FP FP FN FP FP FP FP TP TP FP FP FP FP FP

IL-1R(1) FP FP FP FP FP FN TP FP FP FP TP FN TP
IL-1R(RAP) FP FP FP FP FP FP FP FN FP TP FP

IL-3 FP FP FP FP FP FN FN FP FN FP FP FP
IL-3R FP FP FN FN FP FP FP FP

IRAK2 FP FP FP FP FP FP FP
IRAK4 FP FP FP FP FP FP FN FN FP FP FP FP

IkBa FP FP FN FN FP FP FP FN FP FP FN FN FP FN TP FP
MyD88 FP FP FP FP FP FP FP FN FP FP TP FN FN FP FP

NF-kB(NFKB1) FP FP FP FP FP FP FP FP FP FN FP FP FP FN FP FP FN TP TP FN FP
NF-kB(RELA) FP FP FP FP FP FP FP FP FP FN TP FN FN FP FP FP FP FP

NGF FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP TP FP FP TP
PI3K(PIK3CA) FP FP FP FP FP FP FP FP FP FP FP FP FN FP FP TP FP FP FP
PI3K(PIK3CG) FP FP FP FP FP FP FP FN
PI3K(PIK3R1) FP FN FP FP FP FP FP FP FP FP FP FP FP FP FP FP TP TP FN FP TP TP FP FP FP FP FP FP FP TP
PI3K(PIK3R2) FP FP FP FP FP FP FP FP FP FP FP FP FP FP

PRKACA FN FP FP FP FP FP FP FN FN FN FP
PRKAR2A FP FP FP FN TP

TNF-R1 FN FP TP TP FP FN FN FN FN FP FN FP FP FP FN FN FN TP FN
TNFa FP FP FP FP FN FP FP FP FP FN TP FP FN FN FP
TP53 FP FP FP TP TP FP FP FP FP FP FN FP FP FP FP TP TP FP FP FP FP FP FP FP FP TP FP FP FP FP FP FP TP FP FP

TRADD FP FP FN FN FN TP FN FP FP FP FN FN FN FN FN
TRAF2 FP FP FP FP FP FP TP FP FP FP FN TP FN TP FP FP FP FP FP FP FP FP FP FP TP FN FP FN TP FP
TRAIL FP FP FP FP FP FP FP TP FP FP TP FP FP FP FP FP FP FP FP TP TP FP

TRAIL-R FP FP FN FP FP FN FP TP FN FN FP FP FP FP FP FN FP FN TP FP
TrkA FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP TP FP TP FP FP FP FP FN

Figure 6.4: Predicted interactions by MEGADOCK. The green colored cells are true
positives, the red colored cells are false positives and the purple colored cells are false
negatives, validated by LIM database.
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Figure 6.5: Evaluation of the prediction system in apoptosis dataset. The ROC curves
for varying the threshold E∗ values are shown. x-axis is for the false positive rate
( TP
TP+FN

) and y-axis is for the true positive rate ( FP
FP+TN

). Random prediction is indicated
by the diagonal.

6.3.2 Predicted interactions

In this section, we discuss some predicted protein pairs that are not contained PPI

databases (FPs).

(a) CASP3, CASP7

Both CASP3 (caspase-3) and CASP7 (caspase-7) are effector caspases activated by

the initiator caspases. However, it is known that some effector caspases activate other

effector caspases such as CASP3 and CASP6 that are both effector caspases [123]．
Although the initiator and effector caspase cascade is well known, interactions among

effector caspases are disputed [124].

CASP3, CASP6, and CASP7 are possibilities of being activated to [125, 126] and

mutual although functions differ. Although the functions of CASP3, 6 and 7 are

different [125, 126]，it is considered enough and the possibility of the interaction of
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CASP3 and CASP7 is actually suggested the possibility of interaction by Guerrero,

et al. [127]. Fig. 6.6 shows the predicted complex structure of CASP3 and CASP7

generated by MEGADOCK. The predicted complex consists of 2DKO chain A (caspase-

3, p17 subunit) and 2QL9 chain B (caspase-7, p10 subunit).

Additionally, 2DKO chain B (caspase-3, p12 subunit) and 2QL9 chain B, and 2QL9

chain A (caspase-7, p20 subunit) and 2DKO chain A, respectively, have similar struc-

tures. Thus, the predicted complex with each subunit swapped, as shown in Fig. 6.6,

is similar to the original heterodimer and possibly predicted to occur with a high score.

The interaction among effector caspases, as in this case, has not been examined by

biological experiments. In fact, another PPI prediction tool based on template struc-

ture and database information, PrePPI [128, 129] (version 1.2.0), predicted the pair of

caspase-3 and caspase-7 with a high score (the final probability value was 0.99). This

situation is difficult to avoid in large-scale prediction problems. However, efforts such

as the Negatome project [130] will help to improve this difficulty in the future.

(b) Akt, Bax

Bax directly induces release of cytochrome C and Akt is said to be Bax activation

regulator [131]. Akt can prevent apoptosis upon growth factor withdrawal so Akt is

called survival signal transduction factor.

Fig. 6.7 shows the Akt1–Bax complex predicted by MEGADOCK. Akt1 is the one

of Akt isoforms.

(c) BID, IKK

BID works in the cross talk of the extrinsic and intrinsic pathways. The direct

interaction of BID and IKK (IκK kinase) is not validated but it is known that BID

interacts a protein complex containing IKK protein [132]．Fig. 6.8 shows the BID–IKK

complex predicted by MEGADOCK.

6.4 Summary

In this chapter, we applied MEGADOCK to human apoptosis pathway related a

various diseases and attached great importance as a target of drug discovery.

As compared with the predicted performance of PRISM which is another PPI predic-

tion system based on known complex structure as template information, MEGADOCK

brought a slightly low performance.
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Figure 6.6: The predicted complex structure of CASP3 and CASP7 by MEGADOCK.
Green colored protein is CASP3 (PDB: 2DKO A), red colored protein is CASP7 (P10
subunit, PDB: 2QL9 B).
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Figure 6.7: The predicted complex structure of Akt1 and Bax by MEGADOCK. Blue
colored protein is Akt1 (PDB: 1UNQ A), pink colored protein is Bax (PDB: 1F16 A).

Figure 6.8: The predicted complex structure of BID and IKK by MEGADOCK. Orange
colored protein is BID (PDB: 2BID A), purple colored protein is IKK (PDB: 2JVX A).
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Also, the MEGADOCK results included several new PPI candidates such as CASP3–

CASP7, Akt–Bax and BID–IKK.





Chapter 7

Expansion into Protein–RNA

Interaction Prediction

7.1 Introduction

Elucidating protein–RNA interactions is important for understanding cellular sys-

tems such as protein synthesis, gene expression and regulation. Predicting whether

an RNA-binding protein can recognize a given RNA molecule is a great challenge

in computational biology. The number of available crystal structures of protein–RNA

complexes has recently increased, enabling a protein–RNA interaction prediction based

on tertiary structures.

Several statistical studies have been performed on protein–RNA interactions by using

known crystal structures, and these studies provided numerous suggestions regarding

base-residue interaction propensities [133, 134, 135, 136]. The number of studies on

protein–RNA rigid-body docking by using fast Fourier transform (FFT)-based protein-

protein docking methods like Molfit [26], FTDock [28] and ZDOCK [31, 32] has grad-

ually increased [137]. Recently, at CAPRI, an international competition on complex

structural prediction [47, 84], several research groups studied protein–RNA complexes

by using the above mentioned approach. In some studies, for example, the study per-

formed by Peréz-Cano, et al. [137], the technique used could be applied to several

(but not a large number of) protein–RNA complexes. No studies involving exhaustive

interaction prediction for a large number of protein–RNA complexes have yet been

performed. However, a large number of proteins and RNA molecules interact in the

cell, and it presumed that at least 1,500 RNA-binding proteins are coded for in the

human genome [138]. Therefore, it is thought that exhaustive interaction prediction

99
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for proteins and RNA molecules will become increasingly important in the future.

In this study, we developed a new protein–RNA interaction prediction method by

extending our protein-protein interaction prediction systemMEGADOCK with tertiary

structure data.

We evaluated the proposed method by using 78 protein–RNA complex structures

from the PDB. We predicted the interactions for pairs in 78×78 combinations. Of these,

78 original complexes were defined as positive pairs, and the other 6,006 complexes were

defined as negative pairs.

7.2 Materials and Methods

In this study, a new protein–RNA interaction prediction method by using MEGA-

DOCK has been proposed; this system was developed by enhancing the existing

MEGADOCK system for ribonucleotide molecules. This section explains the com-

ponents of the dataset used and of MEGADOCK.

7.2.1 Dataset

The dataset used for assessing accuracy consisted of 78 X-ray protein–RNA complex

structures with a resolution of ≤ 3.0Å and a mutual sequence identity of ≤ 30%. We

obtained the dataset from the PDB by using the PISCES server [139, 140]. The list of

PDB IDs of the protein–RNA complexes used is shown in Table 7.1.

7.2.2 Extend to RNA molecules

MEGADOCK was initially developed for protein-protein interactions. It could not

analyze RNA structures because the atomic charge parameters and atomic Van der

Waals radius parameters in CHARMM19 are defined only for amino acids. Therefore,

we developed a new version of MEGADOCK, which included deoxyribonucleotide and

ribonucleotide atomic radius and charges taken from CHARMM27 [141] as done in a

protein-DNA docking study [142]. In enhanced MEGADOCK, protein is treated as

receptor molecule and RNA is treated as ligand molecule.

7.2.3 Protein–RNA interaction decision

From the results of docking calculations, we predicted whether a protein–RNA pair

can interact or not by the same method of protein-protein interaction prediction. How-
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Table 7.1: List of the PDB IDs of the 78 protein–RNA complexes used.

RNA type PDB ID of the complex
tRNA 1ASY, 1B23, 1F7U, 1FFY, 1H3E, 1H4S, 1K8W, 1N78,

1Q2R, 1QF6, 1QTQ, 1R3E, 1SER, 1TFW, 1U0B, 2AZX,
2B3J, 2BTE, 2CT8, 2FK6, 2FMT, 2GJW, 2I82, 2R8S,
2ZZM, 3EPH, 3FOZ

mRNA 1KNZ, 1M8X, 1WPU, 1WSU, 1ZBH, 2ANR, 2F8K, 2HW8,
2IPY, 2J0S, 2PJP, 3K62

rRNA 1FEU, 1MZP, 2ASB, 2BH2, 3AEV
ssRNA 1FXL, 2BX2, 2JLV, 2R7R, 2VNU, 3FHT, 3I5X, 3IEV
dsRNA 1N35, 2AZ0, 2NUG, 2ZKO, 3EQT
siRNA 1SI3, 2BGG, 2F8S, 2ZI0

SRP RNA 1HQ1, 1JID, 1LNG
viral RNA 1F8V, 2E9T, 2QUX, 3BSO

RNA aptamer 1OOA, 3DD2, 3EGZ
others 3IAB (ribozyme), 2GXB (Z-RNA), 1A9N, 2OZB (snRNA),

1SDS, 3HAX (snoRNA)

ever, the reranking tool (ZRANK) is not applicable for RNA molecules. Thus we do

not conduct reranking step.

The PRI(i, j) of protein i and RNA j evaluation value E is defined as follows:

E =
S1 − µ

σ
, (7.1)

µ =
1

D

D∑
k=1

Sk, (7.2)

σ2 =
1

D

D∑
k=1

(Sk − µ)2, (7.3)

where S1 is the top-ranked decoy’s docking score for a protein–RNA pair, Sk is the

k-th ranked decoy’s docking score, and D is the number of decoys. In this study,

we generated 10,800 decoys (= D) by using MEGADOCK. We concluded that a pair

interacts if E is larger than threshold E∗:

PRI(i, j) =

True if E > E∗

False otherwise
(7.4)
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7.3 Results and Discussion

7.3.1 Performance of protein–RNA docking

To confirm the protein–RNA docking performance of enhanced MEGADOCK, we

conducted docking using protein and RNA structures taken from protein–RNA complex

structure data (Table 7.1) and confirmed the accuracy of the docking pose prediction

(re-docking test). We took 3,600 kinds of ligand molecule (RNA) rotation patterns

at intervals of 15 degrees. For each rotation, the translation position with the best

docking score was output. The outputs of docking were 3,600 high-ranked decoys by

default. We used two values, Best Rank and RMSDbest which were shown in Chapter

3 and repeated below, for evaluation:

• Best Rank: Highest rank of the near-native decoys. Here we defined near-native

decoys as those that are included in the 3,600 highest scoring decoys and have

an RMSD of < 5 Å,

• RMSDbest : RMSD of the highest ranked near-native decoy (Å),

where RMSD involves all the atoms between the decoy RNA and original X-ray crystal

RNA structure when the receptor (protein) is fixed.

The re-docking test results are shown in Table 7.2, along with the results of MEGA-

DOCK rPSC, rPSC+ES+RDE and ZDOCK 2.1 (PSC). ZDOCK 2.3 (PSC+ES+DE)

and ZDOCK 3.0 (PSC+ES+IFACE) uses only amino acid parameters (CHARMM19

atomic charge and Atomic Contact Energy for amino acids) and cannot apply the elec-

trostatics and desolvation score to RNA molecules; therefore, these results represent

shape complementarity (PSC score) effects.

The gray cells in Table 7.2 provide the results for a Best Rank of 1. This means that

the first ranked decoy has near-native structure. The number of complexes with first

ranked decoys that have near-native structure (number of gray cells in Table 7.2) for

MEGADOCK rPSC is 47, for MEGADOCK rPSC+ES+RDE is 51, and for ZDOCK

is 48. The results for protein–RNA docking were suggestive of the importance of

electrostatic interaction and desolvation effect.

Some re-docking complex structures are shown in Fig. 7.1; the structure for the

PDB ID 2NUG is shown in (a), 3EPH is shown in (b), and 3FOZ is shown in (c). In

each figure, two RNA structures are shown: the green RNA structures are the first

ranked decoys generated by MEGADOCK, and the red RNA structures are X-ray

crystal structures, that is, native structures. The RMSD for 2NUG is 1.45 Å, 2.25 Å
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(a) 2NUG

(b) 3EPH (c) 3FOZ

Figure 7.1: The structures after re-docking are shown for (a) 2NUG, (b) 3EPH, and
(c) 3FOZ. In each figure, two RNA structures are shown: the green structure is the
first ranked decoy generated by MEGADOCK, and the red structure is the original
X-ray crystal structure.

for 3EPH, and 3.03 Å for 3FOZ (Table 7.2); the results indicate that MEGADOCK

provides good structural predictions.

7.3.2 Performance of protein–RNA interaction prediction

We calculated 78× 78 all-to-all docking with enhanced MEGADOCK and predicted

possible protein–RNA interactions. The accuracy of the decision regarding whether

the given protein–RNA pair could interact was evaluated in terms of sensitivity and
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Table 7.2: Results for protein–RNA re-docking test of MEGADOCK and ZDOCK.
The gray cells are RMSDbest = 1. “-” indicates that there was no near-native decoy
(RMSD is less than 5 Å) existing in 3,600.

old MEGADOCK enhanced MEGADOCK ZDOCK 2.1
rPSC rPSC+ES+RDE (PSC)

PDB ID Best Rank RMSDbest Best Rank RMSDbest Best Rank RMSDbest

1A9N 1 1.068 1 1.068 1 1.064
1ASY 1 1.702 1 1.702 1 1.586
1B23 7 3.144 1 3.144 1 3.441
1F7U 1 2.392 1 2.392 1 1.986
1F8V - - - - - -
1FEU 171 1.817 57 1.617 121 2.259
1FFY 1 3.030 1 3.030 1 2.735
1FXL 1 0.899 1 1.055 1 0.714
1H3E 40 1.227 5 1.980 4 1.741
1H4S 3 2.556 2 3.546 1 2.636
1HQ1 4 1.871 1 1.871 1 1.750
1JID 334 1.512 135 1.512 108 1.792
1K8W 1 1.454 1 1.454 1 1.300
1KNZ 1 0.777 1 0.777 1 0.882
1LNG 1 2.683 1 2.683 2 2.325
1M8X 1 2.454 1 1.521 457 2.019
1MZP 1 1.638 1 1.638 1 1.382
1N35 1 0.842 1 1.299 1 1.625
1N78 1 1.980 1 1.980 9 2.774
1OOA 10 1.500 2 1.500 1 2.052
1Q2R 1 1.491 1 1.491 1 3.632
1QF6 1 2.032 1 2.123 1 1.691
1QTQ 1 1.837 1 1.837 1 2.133
1R3E 1 1.318 1 1.318 1 0.723
1SDS - - - - 1749 4.730
1SER - - 642 4.099 9 2.711
1SI3 1 0.878 1 2.714 2 1.078
1TFW 1 1.697 2 1.153 1 1.427
1U0B 1 1.803 1 2.076 1 2.040
1WPU 1 0.661 1 3.483 1 1.842
1WSU - - 763 1.468 1866 4.273
1ZBH 7 2.376 1 2.376 34 2.754
2ANR 148 1.915 46 1.915 307 1.967
2ASB 1 0.952 1 0.952 1 1.226
2AZ0 25 1.419 3 2.623 7 1.364
2AZX - - - - 151 3.468
2B3J 1 1.362 1 1.362 1 1.528
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Table 7.2 (continue)
old MEGADOCK enhanced MEGADOCK ZDOCK 2.1

rPSC rPSC+ES+RDE (PSC)

PDB ID Best Rank RMSDbest Best Rank RMSDbest Best Rank RMSDbest

2BGG 1 0.864 1 0.864 1 1.309
2BH2 1 1.323 1 1.323 1 1.052
2BTE 18 2.115 2 2.207 26 1.430
2BX2 - - - - - -
2CT8 - - 18 2.455 3 2.608
2E9T 1 3.995 1 3.995 2 4.906
2F8K 1931 3.905 4 2.888 - -
2F8S - - - - - -
2FK6 377 1.292 113 1.292 105 1.474
2FMT 27 2.434 3 2.740 7 4.533
2GJW 2 1.529 1 1.529 2 1.356
2GXB 1 1.222 1 0.680 1 0.763
2HW8 1 1.268 1 1.268 1 1.380
2I82 1 0.927 1 0.927 1 0.902
2IPY 10 1.312 1 1.414 1 1.393
2J0S 5 0.841 7 2.315 1 0.951
2JLV 1 1.924 1 1.924 1 0.860
2NUG 1 1.453 1 1.453 1 1.717
2OZB 7 1.325 1 1.325 1 1.473
2PJP 40 1.471 1 1.471 11 2.016
2QUX 95 0.945 4 1.261 6 1.017
2R7R 2 1.139 7 1.139 10 1.176
2R8S 24 2.706 101 2.706 1 3.109
2VNU 1 1.155 1 1.155 1 0.978
2ZI0 1 1.274 1 1.274 1 1.275
2ZKO 1 1.346 2 1.855 2 1.251
2ZZM 1 2.094 1 2.094 1 2.153
3A6P 1 2.545 1 3.703 1 2.998
3AEV 1 0.898 1 0.898 1 0.922
3BSO 1 0.820 1 0.820 1 1.130
3DD2 93 4.456 59 2.200 6 2.285
3EGZ 1 3.535 7 2.394 1 2.428
3EPH 1 2.249 1 2.249 1 2.135
3EQT 1 0.755 1 0.755 1 1.205
3FHT 1 0.829 1 0.919 1 1.185
3FOZ 1 3.027 1 3.027 1 2.479
3HAX 1 1.926 1 1.452 1 1.814
3I5X 1 0.960 1 0.960 2 1.087
3IAB 1 2.005 1 2.115 1 1.847
3IEV 1 1.004 1 1.004 1 1.040
3K62 1 1.311 1 1.001 1 1.156
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specificity:

sensitivity =
TP

TP + FN
,

specificity =
TN

TN + FP
,

where TP is the number of true-positive samples, TN is the number of true-negative

samples, FP is the number of false-positive samples and FN is the number of false-

negative samples. The overall performance of the protein–RNA interaction prediction

was evaluated using the F -measure as follows:

F -measure =
2 · TP

2 · TP + FP + FN
.

We predicted the protein–RNA interaction with variation of the parameter E∗ (3.0

– 13.0 with increments of 0.1). In the dataset, there were 78 true interactions where

each pair had exclusively one interacting partner. The assessment of our method when

applied to the dataset is shown in Fig. 7.2. The parameter E∗ = 9.6 yielded the best

F -measure of 0.465 with a sensitivity of 0.385 and a specificity of 0.997. Although

proper comparison is not possible because the issues addressed are quite different, a

similar prediction method for PPIs that uses MEGADOCK and provides 44 × 44 all-

to-all PPI prediction has been reported; an F -measure value of 0.43 was obtained (see

Chapter 6). The accuracy of MEGADOCK on protein–RNA interaction predictions is

almost equal to the case of protein-protein interactions.

Moreover, we conducted the same protein–RNA interaction prediction using two

subsets of data made by dividing 78 pairs into half, in order to exclude the possibility

of the overfitting. The process corresponds to a 2-fold cross validation. The results are

shown in Fig. 7.3. Because the two values of E∗ that yielded the maximum F -measure

value for each subsets were almost equal, it can be said that overfitting did not occur.

The receiver-operator characteristics (ROC) curve [85] for the results of the 78× 78

interaction predictions is shown in Fig. 7.4. An ROC curve is a plot of sensitivity

(= true-positive fraction) and specificity (or false-positive fraction = 1 − specificity),

and shows the trade-off between sensitivity and specificity. A completely random

prediction would give a diagonal line from the left bottom to the top right corners

in the plot. The points above the diagonal line represent that the prediction is better

than random. The ROC curve in Fig. 7.4 clearly shows that our method is better than

random prediction. The area under the curve (AUC) of the ROC curve was 0.821,
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max F-measure=0.465
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Sensitivity=0.385Specificity=0.997

E*=9.6

TP=30, FN=48FP=21, TN=5985

Figure 7.2: Results of the 78 × 78 predictions. This graph shows the change in the
F -measure with respect to the threshold E∗. The maximum F -measure is 0.465 when
E∗ is 9.6, with a sensitivity of 0.385 and a specificity of 0.997.

showing the better performance of our method over random prediction (diagonal line,

its AUC is 0.5).

The protein–RNA interaction map of the all-to-all protein–RNA interaction predic-

tion results is shown in Fig. 7.5. The prediction results for all the pairs from the 78×78
combinations are shown in the form of a heatmap in Fig. 7.5. The red cells are those

for which the E-value is larger than E∗(= 9.6). The cell in the diagonal line indicate

the combinations that originally exist and are predicted to interact.

7.3.3 False-positive predictions

From among the 21 existing false-positive pairs, we confirmed the structure of

RNaseIII from Aquifex aeolicus complexed with dsRNA (2NUG) and from tRNA trans-

ferase coupled with tRNA (3EPH, 3FOZ). Because the protein taken from 2NUG is

RNase, it seems to be natural that our system predicted interactions of this protein

with some other dsRNAs in addition to the RNA from the original complex structure.

The PDB IDs and the descriptions for the targeted crystallographic structures are

shown in Table 7.3, which also shows the PRI value of each pair and the prediction

results. The docking structures of the 2NUG protein and RNA of 2GJW, 2ZKO, and
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Figure 7.3: Results of 2-fold cross validation prediction performed using the divided
39×39 subset. This graph shows the change of F -measure with respect to the threshold
E∗. Because the value of E∗ that yielded the maximum F -measure value was almost
equal, it can be said that overfitting did not occur.
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Figure 7.4: ROC curve of 78× 78 dataset prediction results. The area under the curve
(AUC) is 0.821.
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Figure 7.5: 78×78 map of protein–RNA interaction prediction results. The red cells are
the cells for which the E-value is more than E∗(= 9.6). The cells have been arranged
according to the PDB IDs, which have been arranged in alphabetical order for all axes.
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Table 7.3: PDB ID and the description of protein–RNA structures.

PDB ID description
2NUG RNase III from Aquifex aeolicus and dsRNA
2GJW Archaeoglobus fulgidus tRNA-splicing endonuclease
2ZKO NS1 protein of human influenza virus A and dsRNA
3EGZ Homo sapiens u1 small nuclear ribonucleo-protein tetracycline aptamer

and artificial riboswitch
3EPH Saccharomyces cerevisiae dimethylallyl tRNA transferase and tRNA
3FOZ Escherichia coli isopentenyl tRNA transferase and tRNA

Table 7.4: Interaction prediction results of protein–RNA pairs in Fig. 7.6 and Fig. 7.7.

Pair (Protein–RNA) PRI value E Prediction result
2NUG–2NUG 12.5 TP
2NUG–2GJW 9.8 FP
2NUG–2ZKO 9.9 FP
2NUG–3EGZ 11.1 FP
3EPH–3EPH 15.2 TP
3EPH–3FOZ 9.2 TN
3FOZ–3FOZ 17.9 TP
3FOZ–3EPH 12.5 FP

3EGZ are shown in Fig. 7.6. The docking structures of the pair comprising the 3EPH

protein and the 3FOZ RNA and of the pair comprising the 3FOZ protein and the 3EPH

RNA are shown in Fig. 7.7.

On comparing Fig. 7.1(a) and Fig. 7.6, the predicted structures of protein–RNA

complex in Fig. 7.6 are similar to the crystal structure shown in Fig. 7.1. These three

structures obtained high evaluation values. Fig. 7.1(b)(c) and Fig. 7.7 also shows

protein–RNA pairs with similar predictions of the docking pose. In this result, 3FOZ–

3EPH got high PRI value of E = 9.2 (Table 7.4).

It is thought that it can reflect a slight difference by the species (E. coli vs. S.

cerevisiae) that only 3EPH-3FOZ’s was judged as negative (not-interacting) among

four combinations.

7.3.4 Limitations and challenges

RNA is a very flexible molecule, and therefore, the rigid-body docking approach

seems a little inadequate for RNA. However, we think that exhaustive predictions
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(a) 2NUG–2GJW (b) 2NUG–2ZKO (c) 2NUG–3EGZ

Figure 7.6: Protein (RNaseIII) of 2NUG and the RNA of the (a) 2GJW, (b) 2ZKO,
and (c) 3EGZ docked structures. The structures are first ranked decoys generated by
enhanced MEGADOCK

(a) 3EPH–3FOZ (b) 3FOZ–3EPH

Figure 7.7: (a) Protein of 3EPH and RNA for the 3FOZ docking structure and (b)
protein of 3FOZ and RNA for the 3EPH docking structure. The structures are first
ranked decoys generated by enhanced MEGADOCK
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with the rigid-body approach can help elucidate structural similarity between several

protein–RNA interaction events in a living cell.

In future work, we will apply our method to ensemble docking in order to account

for RNA flexibility in the prediction. In a study involving ensemble docking in protein

docking, ensemble docking was executed by ZDOCK by using two or more nuclear

magnetic resonance (NMR) conformations [143]. When considering the flexibility of

RNA, it is thought that taking the structural ensemble of RNA into account contributes

to improving the accuracy of interaction prediction.

We think that further analysis of the protein–RNA interactions from several species

that have similar functions is an interesting area for further studies. We have shown

that exhaustive PPI prediction can contribute to systems biology research [23], and we

will try to combine protein-protein and protein–RNA interaction predictions in future

work.

7.4 Summary

In this study, the PPI prediction system MEGADOCK was enhanced for RNA,

leading to the development of a protein–RNA interaction prediction system. The en-

hanced MEGADOCK is a rapid protein–RNA interaction prediction system that uses

the rigid-body protein–RNA docking method and has a calculation accuracy almost

equal to that of ZDOCK 2.3; the results suggested that electrostatic interaction con-

tributes to a large extent in accuracy of docking pose prediction. Moreover, when it

was applied to the exhaustive screening that predicts correct interacting pairs protein

and RNA using 78 protein and RNA structure data, we obtained F -measure value of

0.465 and AUC value of 0.821.

In future work, further verification of the possibility of interaction judged false-

positive. Possible analysis includes ensemble docking method and verification of

method of evaluating mixture of protein-protein and protein–RNA interaction. Ad-

ditionally, there is a possibility that MEGADOCK find difference of RNA binding

proteins that species are different but that have similar functions. We will challenge a

further analysis on this aspect.
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Chapter 8

Integration of Two Docking Tools

with Different Scoring Models

8.1 Introduction

For improving accuracy of PPI screening, the way of utilizing the information ac-

quired with other prediction tools is one of the answers though which may increase a

calculation cost and narrowing an applicable range.

In this chapter, we conducted PPI network prediction by exhaustive docking us-

ing two different docking engines: ZDOCK 3.0 [33] and MEGADOCK. ZDOCK uses

a scoring function that includes shape complementarity (PSC), electrostatics and a

heuristic potential called atomic contact energy (IFACE). MEGADOCK is a similar

system to ZDOCK that searches probable docking structures in a grid-based 3D space

using FFT. MEGADOCK employs a much simpler score function and thus makes the

calculations 8.9 times faster than ZDOCK.

8.2 Material and Methods

We predicted PPIs in bacterial chemotaxis by using MEGADOCK and ZDOCK. In

ZDOCK prediction, we used the same procedure by MEGADOCK (see Chapter 4)

and only swap docking engine. However, ZDOCK cannot change the parameter of the

number of output decoys per rotations. Thus we set parameters of nθ = 3,600 decoys

per target pair and θ = 15◦ for the ligand rotation step. The target dataset is bacterial

chemotaxis dataset shown in Table 5.2.
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8.3 Results

8.3.1 Predicted PPIs

Fig. 8.1 shows the predicted PPIs by ZDOCK and MEGADOCK. The best F-

measure value was 0.52 (ZDOCK, #TP = 12, #TN = 57, #FP = 11, #FN = 11,

recall = 0.52, precision = 0.52, when E∗ = 7.9) and 0.48 (MEGADOCK, #TP = 14,

#TN = 47, #FP = 21, #FN = 9, recall = 0.61, precision = 0.40, when E∗ = 5.5). For

both the ZDOCK and MEGADOCK predictions, parameter values E∗ was set as the

same values that yielded the best F-measure value when applied to general benchmark

data used in a previous study [23]. Previously known PPIs are colored gray in Fig. 8.1.

8.3.2 Considering protein localization

In the real cell, FliG, FliM and FliN proteins are closely associated with the mem-

brane and only CheY is considered capable of interacting with these proteins. When we

take into account protein localization, resulting in removing flagellar proteins (Figure

1, proteins circled by the dotted line) in the dataset, the best F-measure value was 0.69

(ZDOCK, #TP = 11, #TN = 34, #FP = 6, #FN = 4, recall = 0.73, precision = 0.65)

and 0.54 (MEGADOCK, #TP = 11, #TN = 25, #FP = 15, #FN = 4, recall = 0.73,

precision = 0.42). By restricting target proteins using localization information, both

ZDOCK and MEGADOCK yielded better F-measure values, with both precision and

recall values higher than that of the whole dataset. These results show that more

accurate PPI predictions are made if protein localization is taken into consideration.

8.3.3 Comparison of the prediction by using ZDOCK and

MEGADOCK

Fig. 8.2 shows a comparison of the results obtained by using ZDOCK and MEGA-

DOCK. In total, 17 out of 23 relevant PPIs were detected when at least one of the

docking software programs are used. Among 17 true positives, 9 were predicted by both

of the software packages. Among the 28 false positives, 4 were common for both soft-

ware packages and 7 were specific to ZDOCK, while 17 were specific to MEGADOCK.

Thus, a lower precision value was obtained using MEGADOCK when compared to

ZDOCK.
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Tsr A
(L)

B R W D Y C Z X FliG FliM FliN Tsr A
(L)

B R W D Y C Z X FliG FliM FliN

Tsr ◆ ◆ ◆ ◆◆◆◆ ◆ ◆ ◆ Tsr ◆ ◆ ◆ ◆ ◆

A
(L) ◆ ◆ ◆ ◆◆◆◆ ◆ A

(L) ◆ ◆ ◆ ◆◆◆◆ ◆ ◆ ◆

B B ◆ ◆ ◆

R ◆ R ◆ ◆

W ◆ W ◆ ◆ ◆

D ◆ ◆ D ◆ ◆

Y ◆ ◆ ◆ ◆ Y ◆ ◆ ◆ ◆ ◆ ◆

C C ◆

Z ◆ Z ◆ ◆

X ◆ X ◆ ◆

FliG FliG ◆

FliM FliM

FliN ◆ FliN ◆

(a) ZDOCK (b) MEGADOCK

Figure 8.1: Predicted interactions among chemotaxis proteins. Predicted interactions
among chemotaxis proteins by using (a) ZDOCK and (b) MEGADOCK as docking
engines. The dark grey colored cells indicate known interacting pairs based on con-
ventional studies. Cells with diamond marks indicate predicted interactions. Cells
filled with small dots show flagella protein related combinations. Proteins related to
the flagellar motor are listed on the right/bottom side. The short form of CheA is
known to interact with CheZ [105] but it was not included because the structure was
unavailable. A total of seven interactions that are not colored dark grey were found in
the STRING database [106] by (i) searching interactions associated with experimental
reports or (ii) those annotated in databases (KEGG [98], BioCyc [144]). The interac-
tions are: CheY–FliG, CheY–CheW, CheB–CheW, Tsr–CheZ, Tsr–CheA, CheR–FliN,
CheR–CheZ. These interactions were not considered as “correct” in this study because
they have not been characterized.



118 8. Integration of Two Docking Tools with Different Scoring Models
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FliM-FliN

Tsr-FliM
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CheW-FliG

CheY-FliN
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FliG-FliM FliG-FliN

FliM-FliM FliM-FliN

1 (5)

CheA-CheC

CheR-CheW

CheW-CheX

CheB-CheW

CheW-CheY

CheC-CheX

CheB-CheY

CheW-CheZ

CheZ-CheX

Figure 8.2: Predicted protein–protein interactions. Interactions listed inside the circles
and above the dotted line show ‘True Positive’ pairs, those below the dotted line are
‘False Positive’ pairs. Pairs that are listed outside both circles are ‘False Negative’
pairs. Dotted boxes show flagella protein related interactions.
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8.4 Discussion

8.4.1 Performance of PPI prediction

On the prediction of binary interactions, both ZDOCK and MEGADOCK yielded

F-measure values of more than 0.4. When localizations of proteins were consid-

ered, ZDOCK performed better than MEGADOCK. It should be noted that MEGA-

DOCK employs shape complementarity and an electrostatic score function whereas

ZDOCK also takes into account heuristic score function based on atomic contact en-

ergy (IFACE) [33].

As shown in Fig. 8.2, eight interactions were detected only by one of the docking

software programs. Tsr-CheR, Tsr-CheW and CheA-CheA interactions were detected

only by ZDOCK. Tsr-CheD, CheA-CheB, CheD-CheC, CheY-FliN and FliG-FliG in-

teractions were detected only by MEGADOCK. Two out of three of the interactions

detected by ZDOCK, Tsr-CheW and CheA-CheA, are tight binding interactions that

constitute the receptor complex. In the case of MEGADOCK, with the exception of

FliG-FliG, all the five detected interactions are transient. These results suggest there

are differences in the type of interactions detected when different score functions are

applied. It is very interesting to see the difference of the predicted PPIs by using

different score functions.

Applying other score functions for docking or conducting re-ranking calculations

with more sophisticated score functions to the generated decoys would be useful for

analyzing the effects of score function on PPI prediction. To investigate this further

we require a more thorough dataset such as that used by Kastritis and Bonvin [145]

to evaluate any correlation between score function types and known protein–protein

binding affinities.

One such example of applying different PPI prediction procedures is given in Fig. 8.3,

which shows PPI prediction results for a chemotaxis dataset using the PRISM proto-

col [14]. PRISM uses a template dataset of known protein–protein binding interfaces

extracted from PDB. The surface of the target monomer protein, for which we want to

identify binding partners, is analyzed against all the interface templates by structural

alignment. Target protein pairs whose surface structures are aligned to any known

interface pairs in the template dataset are then refined and scored by FiberDock [45].

PRISM identified four candidates that potentially interact with most of the proteins

in the dataset. Specifically, of the 13 proteins involved in the chemotaxis dataset,

CheA and CheZ were predicted to interact with 11 while Tsr and CheY were predicted
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Tsr A
(L) B R W D Y C Z X FliG FliM FliN

Tsr ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

A
(L) ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

B ◆ ◆ ◆

R ◆ ◆ ◆

W ◆

D ◆

Y ◆ ◆ ◆ ◆ ◆ ◆ ◆

C ◆ ◆

Z ◆ ◆ ◆

X ◆ ◆

FliG

FliM ◆

FliN

PRISM

Figure 8.3: Predicted interactions among chemotaxis proteins identified by using
PRISM. The cells with a diamond mark indicate the predicted interacting pairs. The
prediction was performed by defining an interacting pair of proteins according to the
following criteria: (i) if the two potential binding partners have an interaction surface
that is aligned to a template dataset constructed from known crystal structures, (ii)
the predicted binding event yields less than zero energy by FiberDock calculations.
The dark grey coloured cells indicate known interacting pairs based on conventional
studies.

to interact with 10. Interestingly, the docking-based procedure applied to CheZ gave

fewer predicted binding partners i.e., ZDOCK (three partners) and MEGADOCK (four

partners). In this chemotaxis dataset only two interactions are confirmed for CheZ i.e.,

oligomerization of CheZ and interaction with CheY-p. However, CheZ is also known

to interact with the short form of CheA [105] and localize in the cell pole area where

receptor complexes are located [146]. CheY, the main target for CheZ, moves between

the receptor area and flagellar motor area. The template-based PPI prediction suggests

that CheZ may undergo non-specific interactions. Thus, it would be of interest to

further analyze the role of CheZ in the receptor complex area.
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8.4.2 Protein localization

Both docking tools yielded better performances when flagellar motor related proteins

are excluded from the target, while random prediction with a recall value of 0.5 yielded

similar F-measure values (0.34 for the whole dataset and 0.35 for the restricted tar-

gets). It should be noted that direct binary interactions among flagellar motor proteins

are still unclear and the true interacting pairs might be different from the “correct”

interactions used here. Combining protein localization prediction methods such as

PSORT [147] and SOSUI [148], especially for forecasting whether a given protein is

membrane associated or soluble, to our PPI prediction would be useful when applying

our method to large numbers of target proteins.

8.4.3 False negative interactions

When using both ZDOCK and MEGADOCK predictions, 7 interactions were not

detected; FliG–FliG, FliM–FliM, FliG–FliM, FliG–FliN, FliM–FliN, Tsr–CheB and

CheY–FliM (Fig. 8.2).

When we removed interactions among flagellar motors to consider protein local-

ization, only the interaction between Tsr–CheB and CheY–FliM were not detected by

both ZDOCK and MEGADOCK. It is known that for these interactions to occur CheB

and CheY both need to be phosphorylated [149, 150]. In our dataset there were no

protein structures of the phosphorylated forms. However, CheY structures used here

include the mimicked activated state by using BeFe3−, such as PDB ID: 1ZDM [151].

This activated structure showed only modest differences with the native structure in

terms of backbone geometry [151]. Based on these results, we cannot assess whether

a rigid-body docking method is capable of distinguishing the phosphorylated from the

non-phosphorylated state. Nonetheless, our findings are understandable because we did

not use a flexible docking tool that considers phosphorylation mediated conformational

changes of CheY and CheB.

One possible mean of obtaining increased sensitivity in our PPI prediction model is

to construct likely structural variations of target proteins and then use the ensemble

set as a docking target.

8.4.4 False positive interactions

There are four common false positive PPIs (CheD–CheY, CheA–CheD, CheR–CheY,

CheY–CheY) predicted both by ZDOCK and MEGADOCK, three of which include
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CheY. In total, there are 51 structures of CheY in the dataset and 7 interactions out of

13 target proteins were predicted for CheY by both docking tools. Positive predictions

were obtained using various structures of single protein species. This, however, does

not mean that only specific protein structure pairs generate positive interactions. CheA

has 21 structures in the dataset. Both of the docking tools predicted 5 interactions out

of 13. The availability of more structural data for a given protein enriches structural

variation and serves to increase sensitivity. In such cases we can consider using higher

E∗ value to get better precision.

This result is also understandable from the fact that CheY has multiple binding part-

ners. Bacterial chemotaxis is a two-component signal transduction system consisting

of a histidine kinase (CheA) and response regulators (CheB, CheY). CheA operates

in the form of a complex with receptors and CheW. Phosphorylated CheB works as

a modifier of receptor proteins, which accumulate at the cell pole [152]. While CheB

operates in the local area around the receptor complex, CheY accepts signals from

CheA and transmits them to the flagellar motors, which are evenly distributed around

the entire surface of the cell. There are several processes that modify CheY activity

during transmission of the signal; CheC, CheX (T. maritima) and CheZ (E. coli, S. ty-

phimurium) have activity that dephosphorylates CheY [104, 107, 153]. Thus, CheY

undergoes transient interactions with several different proteins during the signal trans-

duction process. Indeed, our conclusion that CheY undergoes non-specific binding

with many types of proteins is in agreement with our findings given in Fig. 8.1. It

should also be noted that both docking tools predict CheY undergoes dimerization.

Moreover, sequence homology based interlog search using PiSite [5] also suggests that

dimerization of CheY is likely.

8.5 Summary

We conducted a reconstruction of the protein–protein interaction network using two

distinct physical docking tools. The predicted interactions generated from the two

tools were slightly different. However, when the positive predictions from both tools

were combined, the vast majority of relevant interactions were represented. Indeed,

there were only two exceptions, both of which required phosphorylation to activate the

corresponding interaction.



Chapter 9

Integration of Template-based and

De Novo PPI Prediction

9.1 Introduction

Recently, there are two typical approaches for tertiary-structure-based PPI predic-

tions: a method based on template matching with known protein structures and an-

other method based on de novo protein docking like MEGADOCK as discussed. The

template-based method is based on the hypothesis that known complex structures or

interface architectures can be used to model the complex formed between two target

proteins. The hypothesis is logical, and this method provides good prediction per-

formance when complex structural information is available as a template; however,

if the template structure information is not available, performance is poor. In addi-

tion, because the interface architecture is not always similar for similar interactions, the

template-based method has a narrow applicable range. In contrast, the de novo protein

docking method has a wide applicable range because it uses only tertiary structural in-

formation. However, because the advantage provided by existing template information

is not utilized, the prediction performance is not so good.

Tuncbag, et al. developed a template-based PPI prediction method called

PRISM [14], which is based on information regarding the interaction surface of crys-

talline complex structures. PRISM has been applied for predicting PPIs in a human

apoptosis pathway [114] and a p53-protein-related pathway [154], and has contributed

to the understanding of the structural mechanisms underlying some types of signal

transduction.

We developed a PPI prediction method called MEGADOCK [59] based on protein–

123
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protein docking without interaction surface information. MEGADOCK has been ap-

plied for PPI screening for a bacterial chemotaxis pathway (Chapter 5) and a human

apoptosis pathway (Chapter 6) and has contributed to the identification of protein

pairs that may interact.

However, the prediction results of both template-based and de novo protein docking

methods in these studies contained many false-positive predictions. PRISM obtained

a precision value of 0.231 when applied to a human apoptosis pathway that consisted

of 57 proteins, which was higher than the precision obtained with random prediction

(precision value of 0.086), and MEGADOCK obtained a precision value of 0.400 when

applied to a bacterial chemotaxis pathway that consisted of 13 proteins, which was

higher than the precision obtained with random prediction (precision value of 0.253).

To identify new PPIs, the prediction results need to be validated using biological exper-

iments. For this purpose, obtaining a low number of predicted interaction candidates

with high reliability is more important than obtaining a high number of predictions

with low reliability. Thus, this paper aims to improve the reliability of the method

used to obtain PPI predictions.

In this study, we combined two different PPI prediction methods to improve the pre-

cision of PPI prediction. Because PRISM is a template-based method, its prediction

accuracy depends on the template dataset prepared. Only PPIs whose interaction sur-

face structures are conserved are expected to be predicted. In contrast, MEGADOCK

is a non-template-based method (also called de novo prediction), which has the de-

merit of generating false-positives for the cases in which no similar structures are seen

in known complex structure databases; thus, template-based method would be ruled

out from the prediction. However, in situations where template structures are not

present in databases, MEGADOCK can still predict PPIs. This qualitative difference

between the two methods typically makes their output different. Thus, the combina-

tion of both prediction methods may improve prediction accuracy, as the intersection

set (AND set) of both results may contain fewer false-positives; this improvement in

precision would also contribute to improvement in the prediction reliability provided

by the use of just one method.

Such an approach is called a “meta” approach. Meta approaches have already been

used in the field of protein tertiary structure prediction [155], and critical experiments

have demonstrated improved performance of meta predictors when compared with the

individual methods used in the meta predictors. The meta approach has also provided

favorable results in protein domain prediction [156] and the prediction of disordered

regions in proteins [157]. We have therefore proposed a new PPI prediction method
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based on the consensus between template-based and de novo docking methods. Gen-

erally, a meta prediction method may have low applicability because meta approaches

require applicable conditions for every method in the approach. However, if structural

information is available, the de novo docking method introduced in this study is al-

ways applicable with or without template information. Thus, the applicability of the

consensus method is not narrower than that of a template-based method.

9.2 Materials and Methods

9.2.1 Template-based PPI prediction

We used PRISM for template-based PPI prediction. PRISM uses two input datasets:

the template set and the target set. The template set consists of interfaces extracted

from protein pairs that are known to interact. The target set consists of protein

chains whose interactions need to be predicted. The two sides of a template interface

are compared with the surfaces of two target monomers by structural alignment. If

regions of the target surfaces are similar to the complementary sides of the template

interface, then these two targets are predicted to interact with each other through the

template interface architecture.

The prediction algorithm consists of four steps: (1) interacting surface residues of

target chains are extracted using Naccess [158]; (2) complementary chains of template

interfaces are separated and structurally compared with each of the target surfaces

by using MultiProt [159]; (3) the structural alignment results are filtered according to

threshold values, and the resulting set of target surfaces is transformed onto the corre-

sponding template interfaces to form a complex; and (4) the FiberDock [45] algorithm

is used to refine the interactions to introduce flexibility, resolve steric clashes of side

chains, compute the global energy of the complex, and rank the solutions according to

their energies. When the computed energy of a protein pair is less than −10 kcal/mol,

the pair is determined to “interact” (personal communication with Ms. Saliha Ece

Acuner Ozbabacan, July 12, 2013). This prediction protocol has been described in

detail in a previous study [14, 114].

9.2.2 De novo PPI prediction

For de novo PPI prediction, we used MEGADOCK with rPSC, ES and RDE func-

tions (see Chapters 3 and 4). MEGADOCK does not require template structures for
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prediction.

Hear, the PPI prediction scheme used in this study is reproduced below. First,

we conducted rigid-body docking calculations based on a simplified energy function

considering shape complementarity, electrostatics, and hydrophobic interactions for all

possible binary combinations of proteins in the target set. Using this process, we ob-

tained a group of high-scoring docking complexes for each pair of proteins. Next, we

applied ZRANK [78] to the predicted complex structures for more advanced binding

energy calculation and re-ranked the docking results based on ZRANK energy scores.

The deviation of the selected docking scores from the score distribution of high-ranked

complexes was determined as a standardized score (Z-score) and was used to assess

possible interactions. This prediction protocol has been described in Chapter 4. Poten-

tial complexes that had no other high-scoring interactions nearby were rejected using

structural differences. Thus, we considered likely binding pairs that had at least one

populated area of high-scoring structures, one of which may be the true binding site.

9.2.3 Consensus prediction method

In this study, we proposed a new meta-prediction method by evaluating the consensus

between both previously used prediction methods. The proposed method consists

of two steps: (1) prediction from the same target set by PRISM and MEGADOCK

and (2) consideration that the method provides a prediction regarding target protein

pair interaction only when both PRISM and MEGADOCK predict that the target

protein pair interacts. Although some true-positives may be dropped by this method,

the remaining predicted pairs are expected to have higher reliability because of the

consensus between two prediction methods that have different characteristics.

9.2.4 Dataset

In this section, we focused on the human apoptosis signaling pathway previously

analyzed by PRISM [114] and MEGADOCK (same as Chapter 6, Table 6.2) because

our prediction results can thus be compared directly to the results of the previous

study. Table 1 shows the list of PDB IDs and chains of this dataset.

Known PPIs were collected from the STRING database [106]. We used only exper-

imental data in the literature obtained from STRING with a confidence score > 0.5.

The number of known PPIs was 137. Because the database does not contain existing

self-interactions, we did not predict self-interactions. Thus, the number of target pairs

was 57C2 = 1, 596.
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9.2.5 Evaluation of prediction performance

Here, we have defined #TP, #FP, #FN, #TN, precision, recall, and the F-measure,

which we used to evaluate the prediction results: #TP is the number of predicted PPIs

that were also found in STRING (true-positive), #FP is the number of predicted PPIs

that were not in STRING (false-positive), #FN is the number of PPIs not predicted

by the system even though the pair was found to interact in STRING (false-negative),

and #TN is the number of negative predictions that were also not found in STRING

(true-negative). To identify new PPIs in biological experiments after in silico screening,

precision is more important than recall to reduce the cost of validation.

9.3 Results and Discussion

9.3.1 Comparison of template-based and de novo docking

methods

Fig. 9.1 (a) and (b) show the prediction results for PRISM and MEGADOCK, respec-

tively, as applied to a human apoptosis pathway. The threshold used for MEGADOCK

prediction yielded the best value of the F-measure for this dataset. The diagonal line

(black cells) in Fig. 9.1 indicates self-interactions that were not considered as prediction

targets. As shown in Fig. 9.1, PRISM was performed with fewer FPs than MEGA-

DOCK. Table 9.1 shows the evaluation of prediction results. With MEGADOCK,

we obtained a lower value of precision and a higher value of recall relative to PRISM.

When the F-measure was evaluated as a measure of overall performance, MEGADOCK

showed lower values than PRISM. Predictions by MEGADOCK contained more FPs

because, in contrast to PRISM, MEGADOCK does not restrict interface structures to

those found in template structures. In contrast, PRISM obtained lower recall values

than MEGADOCK because it only searched interactions whose interface structures

could be found in the template set.

9.3.2 Results of the consensus prediction

Fig. 9.2 shows the Venn diagram of the number of TPs and FPs of the results of

PRISM and MEGADOCK. A large difference was observed in the results obtained by

the two methods. Thus, combining the prediction results of PRISM and MEGADOCK

may provide better performance in PPI prediction. All of the predicted pairs of TPs

and FPs are shown in Table 9.2.
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Figure 9.1: Apoptosis prediction by the (a) PRISM, (b) MEGADOCK, and (c) con-
sensus methods. The green cells are true-positives, the red cells are false-positives,
and the purple cells are false-negatives. The diagonal cells (black cells) have no PPI
information in the STRING database and are excluded from the prediction targets.
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TP 

FP 

PRISM MEGADOCK 

22 34 28 

118 68 297 

Figure 9.2: Venn diagram of apoptosis pathway prediction results. The common set
(#TP=34, #FP=68) is denoted as “Consensus”.

Table 9.1: Accuracy of human apoptosis pathway prediction

Method #TP #FP #FN #TN Precision Recall F-measure
Consensus(AND) 34 68 103 1,391 0.333 0.248 0.285

OR 84 483 53 976 0.148 0.613 0.239
PRISM 56 186 81 1,273 0.231 0.409 0.296

MEGADOCK 62 365 75 1,094 0.145 0.453 0.220
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Table 9.2: The list of all true-positive pairs and false-positive pairs predicted by the
PRISM, MEGADOCK, and consensus methods; (a) the true-positive list of PRISM
predictions, (b) the false-positive list of PRISM predictions, (c) the true-positive list of
MEGADOCK predictions, (d) the false-positive list of MEGADOCK predictions, (e)
the true-positive list of consensus predictions, and (f) the false-positive list of consensus
predictions.

(a) The true-positive list of PRISM predictions
AKT2 – CASP3 CASP6 – FLIP CASP9 – IAP(BIRC4)

AKT2 – IAP(BIRC4) CASP6 – IAP(BIRC2) FADD – FLIP
APAF1 – BCL-XL CASP7 – CASP8 FADD – MyD88
APAF1 – CASP3 CASP7 – CASP9 FADD – TNF-R1
APAF1 – CASP9 CASP7 – FLIP FADD – TRADD
APAF1 – Fas CASP7 – IAP(BIRC2) FADD – TRAIL
BCL-2 – BID CASP7 – IAP(BIRC3) IAP(BIRC2) – IKK

BCL-2 – Cn(PPP3CA) CASP7 – IAP(BIRC4) IAP(BIRC2) – TNFα
BCL-XL – TP53 CASP7 – TNF-R1 IAP(BIRC3) – TRAF2
BID – CASP8 CASP8 – CASP9 IL-1(A) – IL-1R(1)
BID – Fas CASP8 – FADD IL-1(B) – IL-1R(1)

CASP3 – CASP6 CASP8 – FLIP IL-1R(RAP) – IRAK4
CASP3 – CASP8 CASP8 – IAP(BIRC2) IκBα – NF-κB(RELA)
CASP3 – CASP9 CASP8 – IAP(BIRC4) PI3K(PIK3R1) – TrkA

CASP3 – Cn(PPP3CA) CASP8 – IKK TNF-R1 – TNFα
CASP3 – FLIP CASP8 – TRAF2 TNFα – TRAF2

CASP3 – IAP(BIRC2) CASP8 – TRAIL-R TRADD – TRAF2
CASP3 – IAP(BIRC4) CASP9 – IAP(BIRC2) TRAIL – TRAIL-R

CASP6 – CASP8 CASP9 – IAP(BIRC3)

(b) The false-positive list of PRISM predictions
AIF – TRAF2 CASP6 – DFF45 DFF45 – TRAF2
AKT1 – Fas CASP6 – IKK FADD – PI3K(PIK3CA)
AKT1 – TrkA CASP6 – PI3K(PIK3R1) FADD – PI3K(PIK3CG)
AKT2 – Bax CASP6 – TRAF2 FADD – PI3K(PIK3R1)

AKT2 – FADD CASP6 – TRAIL-R FADD – TNFα
AKT2 – IL-3 CASP7 – CytC FLIP – TrkA

AKT3 – Cn(PPP3CA) CASP7 – FADD Fas – IKK
AKT3 – Cn(PPP3R1) CASP7 – Fas Fas – MyD88

AKT3 – MyD88 CASP7 – IKK Fas – NF-κB(NFKB1)
AKT3 – TrkA CASP7 – IRAK4 Fas – NF-κB(RELA)
APAF1 – Bax CASP7 – MyD88 Fas – TP53

APAF1 – CASP7 CASP7 – NF-κB(NFKB1) Fas – TRAF2
APAF1 – FADD CASP7 – NF-κB(RELA) IAP(BIRC2) – MyD88
APAF1 – IKK CASP7 – NGF IAP(BIRC2) – PI3K(PIK3R1)
APAF1 – IL-3 CASP7 – PI3K(PIK3CA) IAP(BIRC3) – NGF

APAF1 – IRAK4 CASP7 – PI3K(PIK3CG) IAP(BIRC4) – MyD88
APAF1 – PI3K(PIK3R1) CASP7 – PI3K(PIK3R1) IAP(BIRC4) – TRADD

APAF1 – TRAF2 CASP7 – TNFα IKK – IRAK2
APAF1 – TrkA CASP7 – TRAF2 IKK – MyD88
BCL-2 – FADD CASP8 – Cn(PPP3CA) IKK – NF-κB(NFKB1)
BCL-2 – IKK CASP8 – IAP(BIRC3) IKK – PI3K(PIK3R1)
BCL-2 – NGF CASP8 – IL-1R(1) IKK – PI3K(PIK3R2)

BCL-2 – PI3K(PIK3R1) CASP8 – PI3K(PIK3R1) IKK – TP53
BCL-2 – TRAF2 CASP9 – Calpain1 IKK – TRAF2

BCL-XL – Cn(PPP3CA) CASP9 – DFF40 IL-1R(1) – IL-3
BCL-XL – Fas CASP9 – FADD IL-1R(1) – TNF-R1
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Table 9.2 (continue)
BCL-XL – IKK CASP9 – FLIP IL-1R(1) – TNFα

BCL-XL – IL-1R(1) CASP9 – IL-3 IL-1R(RAP) – TNFα
BCL-XL – IL-3 CASP9 – IL-3R IL-3 – MyD88

BCL-XL – PI3K(PIK3R1) CASP9 – IRAK2 IL-3 – PI3K(PIK3R1)
BCL-XL – TRAF2 CASP9 – IRAK4 IL-3 – TNF-R1
BCL-XL – TRAIL-R CASP9 – TNFα IL-3 – TRAF2

BID – CASP7 Calpain1 – FADD IL-3 – TrkA
BID – Cn(PPP3CA) Calpain1 – IAP(BIRC4) IL-3R – TNF-R1
BID – IAP(BIRC2) Calpain1 – PI3K(PIK3R2) IL-3R – TNFα

BID – IKK Calpain2 – IAP(BIRC2) IL-3R – TRAF2
Bax – CASP9 Calpain2 – PI3K(PIK3R2) IL-3R – TRAIL-R
Bax – Calpain2 Calpain2 – TRAF2 IRAK4 – TNF-R1
Bax – Cn(CHP) Cn(PPP3CA) – DFF45 MyD88 – PI3K(PIK3R1)
Bax – Cn(CHP2) Cn(PPP3CA) – Fas MyD88 – PI3K(PIK3R2)

Bax – Cn(PPP3CA) Cn(PPP3CA) – IAP(BIRC2) NF-κB(NFKB1) – PI3K(PIK3R1)
Bax – Cn(PPP3R1) Cn(PPP3CA) – IKK NF-κB(RELA) – NGF

Bax – Fas Cn(PPP3CA) – MyD88 NF-κB(RELA) – PI3K(PIK3CA)
Bax – IAP(BIRC4) Cn(PPP3CA) – PI3K(PIK3R2) NGF – TRAF2

Bax – IRAK2 Cn(PPP3CA) – PRKACA NGF – TRAIL
Bax – MyD88 Cn(PPP3CA) – TNFα PI3K(PIK3CA) – TNFα

Bax – PI3K(PIK3CA) Cn(PPP3CA) – TP53 PI3K(PIK3CG) – TNFα
Bax – PI3K(PIK3CG) Cn(PPP3CA) – TRAF2 PI3K(PIK3CG) – TRAF2

Bax – TNFα Cn(PPP3R1) – DFF40 PI3K(PIK3CG) – TRAIL
Bax – TrkA Cn(PPP3R1) – Fas PI3K(PIK3R1) – TNF-R1

CASP3 – CASP7 Cn(PPP3R1) – IL-3 PI3K(PIK3R1) – TRAF2
CASP3 – Cn(CHP) Cn(PPP3R1) – TNFα PI3K(PIK3R2) – TNF-R1

CASP3 – Fas CytC – PI3K(PIK3R2) PI3K(PIK3R2) – TRADD
CASP3 – IKK DFF40 – IL-3R PI3K(PIK3R2) – TRAF2

CASP3 – IRAK4 DFF40 – MyD88 TNFα – TRAIL
CASP3 – NF-κB(NFKB1) DFF40 – TNFα TNFα – TRAIL-R
CASP3 – PI3K(PIK3R2) DFF40 – TP53 TP53 – TRAF2

CASP3 – TNF-R1 DFF40 – TRAF2 TP53 – TRAIL
CASP3 – TRAF2 DFF45 – FADD TP53 – TRAIL-R
CASP6 – CASP7 DFF45 – Fas TRAF2 – TRAIL-R
CASP6 – CASP9 DFF45 – IL-3 TRAF2 – TrkA

CASP6 – Cn(PPP3CA) DFF45 – PI3K(PIK3R1) TRAIL-R – TrkA

(c) The true-positive list of MEGADOCK predictions
AKT1 – IAP(BIRC4) BID – Fas CASP9 – IAP(BIRC2)

AKT2 – CASP3 CASP3 – CASP8 CASP9 – IAP(BIRC3)
AKT2 – IAP(BIRC4) CASP3 – CASP9 CASP9 – IAP(BIRC4)

AKT3 – CASP3 CASP3 – Cn(PPP3CA) FADD – Fas
APAF1 – BCL-XL CASP3 – FLIP FADD – IKK
APAF1 – CASP3 CASP3 – IAP(BIRC2) FADD – TRAIL
APAF1 – CASP8 CASP3 – IAP(BIRC3) FADD – TRAIL-R
APAF1 – CASP9 CASP3 – IAP(BIRC4) FLIP – TP53
APAF1 – CytC CASP7 – CASP8 FLIP – TRAF2
BCL-2 – BID CASP7 – CASP9 IAP(BIRC2) – IKK
BCL-2 – Bax CASP7 – IAP(BIRC2) IAP(BIRC2) – TRADD

BCL-2 – CASP3 CASP7 – IAP(BIRC3) IAP(BIRC3) – TRAF2
BCL-2 – Cn(PPP3R1) CASP7 – IAP(BIRC4) IL-1(B) – IL-1R(1)

BCL-2 – TP53 CASP7 – TNF-R1 IL-1R(1) – MyD88
BCL-XL – BID CASP8 – CASP9 IL-1R(RAP) – PI3K(PIK3R1)
BCL-XL – Bax CASP8 – FADD IκBα – TP53

BCL-XL – CASP9 CASP8 – FLIP NGF – TrkA
BCL-XL – TP53 CASP8 – IAP(BIRC4) PI3K(PIK3R1) – TrkA
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Table 9.2 (continue)
BID – Bax CASP8 – TNF-R1 TNF-R1 – TRAF2

BID – Calpain1 CASP8 – TRAF2 TRAIL – TRAIL-R
BID – FADD CASP8 – TRAIL

(d) The false-positive list of MEGADOCK predictions
AIF – AKT2 CASP3 – PI3K(PIK3R1) FADD – TP53
AIF – BCL-XL CASP3 – PI3K(PIK3R2) FLIP – IAP(BIRC4)
AIF – CASP7 CASP3 – TNFα FLIP – IKK
AIF – Calpain2 CASP3 – TP53 FLIP – IL-1R(RAP)

AIF – PI3K(PIK3R1) CASP3 – TRAF2 FLIP – NGF
AIF – TP53 CASP3 – TRAIL FLIP – PI3K(PIK3R2)
AIF – TRAIL CASP3 – TRAIL-R Fas – IAP(BIRC3)
AIF – TrkA CASP3 – TrkA Fas – PRKACA

AKT1 – APAF1 CASP6 – CASP7 Fas – TP53
AKT1 – BCL-2 CASP6 – IAP(BIRC3) Fas – TRAIL
AKT1 – Bax CASP6 – IAP(BIRC4) IAP(BIRC2) – IL-1(A)

AKT1 – CASP8 CASP6 – IKK IAP(BIRC2) – IL-3
AKT1 – DFF40 CASP6 – TRAIL IAP(BIRC2) – IRAK2
AKT1 – DFF45 CASP7 – Calpain1 IAP(BIRC2) – NF-κB(NFKB1)
AKT1 – FADD CASP7 – Calpain2 IAP(BIRC2) – NGF
AKT1 – Fas CASP7 – Cn(CHP2) IAP(BIRC2) – TRAIL-R

AKT1 – IAP(BIRC2) CASP7 – Cn(PPP3R1) IAP(BIRC3) – NF-κB(RELA)
AKT1 – IAP(BIRC3) CASP7 – CytC IAP(BIRC3) – NGF

AKT1 – IKK CASP7 – FADD IAP(BIRC3) – PI3K(PIK3R2)
AKT1 – IL-3R CASP7 – Fas IAP(BIRC3) – PRKACA

AKT1 – NF-κB(NFKB1) CASP7 – IL-1(B) IAP(BIRC3) – PRKAR2A
AKT1 – NF-κB(RELA) CASP7 – IκBα IAP(BIRC3) – TP53
AKT1 – PI3K(PIK3CG) CASP7 – MyD88 IAP(BIRC3) – TRAIL-R
AKT1 – PI3K(PIK3R2) CASP7 – NF-κB(NFKB1) IAP(BIRC4) – IKK

AKT1 – TRAF2 CASP7 – NF-κB(RELA) IAP(BIRC4) – IL-1(B)
AKT2 – APAF1 CASP7 – NGF IAP(BIRC4) – IL-1R(1)
AKT2 – BCL-XL CASP7 – PI3K(PIK3CA) IAP(BIRC4) – IL-1R(RAP)
AKT2 – CASP9 CASP7 – PI3K(PIK3R1) IAP(BIRC4) – IL-3R
AKT2 – Calpain2 CASP7 – PI3K(PIK3R2) IAP(BIRC4) – IRAK2
AKT2 – Cn(CHP2) CASP7 – PRKACA IAP(BIRC4) – IκBα

AKT2 – FLIP CASP7 – TNFα IAP(BIRC4) – MyD88
AKT2 – IAP(BIRC3) CASP7 – TP53 IAP(BIRC4) – NF-κB(NFKB1)

AKT2 – IL-1(B) CASP7 – TRADD IAP(BIRC4) – PI3K(PIK3CA)
AKT2 – IL-3 CASP7 – TRAF2 IAP(BIRC4) – PI3K(PIK3CG)

AKT2 – MyD88 CASP7 – TRAIL IAP(BIRC4) – PI3K(PIK3R1)
AKT2 – NF-κB(RELA) CASP7 – TrkA IAP(BIRC4) – PI3K(PIK3R2)
AKT2 – PI3K(PIK3CA) CASP8 – Cn(CHP2) IAP(BIRC4) – TNF-R1
AKT2 – PI3K(PIK3R1) CASP8 – Cn(PPP3CA) IAP(BIRC4) – TP53

AKT2 – TP53 CASP8 – DFF45 IAP(BIRC4) – TRADD
AKT2 – TRAF2 CASP8 – IAP(BIRC3) IAP(BIRC4) – TRAF2
AKT2 – TRAIL-R CASP8 – MyD88 IAP(BIRC4) – TRAIL
AKT2 – TrkA CASP8 – NGF IAP(BIRC4) – TRAIL-R
AKT3 – APAF1 CASP8 – PI3K(PIK3R1) IAP(BIRC4) – TrkA
AKT3 – CASP7 CASP8 – TP53 IKK – IL-3
AKT3 – CASP9 CASP8 – TrkA IKK – IRAK4
AKT3 – FADD CASP9 – Cn(PPP3R1) IKK – MyD88
APAF1 – Bax CASP9 – IL-1R(RAP) IKK – NF-κB(NFKB1)

APAF1 – CASP6 CASP9 – IRAK2 IKK – NF-κB(RELA)
APAF1 – CASP7 CASP9 – IκBα IKK – PI3K(PIK3R1)

APAF1 – IAP(BIRC3) CASP9 – PI3K(PIK3R1) IKK – TP53
APAF1 – IAP(BIRC4) CASP9 – PI3K(PIK3R2) IKK – TRADD
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Table 9.2 (continue)
APAF1 – IKK CASP9 – TNFα IKK – TRAF2

APAF1 – IL-1R(RAP) CASP9 – TRAF2 IKK – TRAIL
APAF1 – NF-κB(NFKB1) CASP9 – TRAIL IKK – TrkA
APAF1 – NF-κB(RELA) Calpain1 – IAP(BIRC3) IL-1(A) – IL-1R(RAP)

APAF1 – NGF Calpain1 – NGF IL-1(A) – PI3K(PIK3CA)
APAF1 – PI3K(PIK3CG) Calpain2 – IAP(BIRC4) IL-1(A) – PI3K(PIK3R1)
APAF1 – PI3K(PIK3R1) Calpain2 – IKK IL-1(A) – TP53
APAF1 – PRKAR2A Calpain2 – IL-1(B) IL-1(A) – TRAIL

APAF1 – TNFα Calpain2 – NGF IL-1(B) – IRAK4
APAF1 – TP53 Calpain2 – PRKACA IL-1(B) – PI3K(PIK3CG)
APAF1 – TRAF2 Calpain2 – TP53 IL-1(B) – PI3K(PIK3R1)
BCL-2 – DFF45 Calpain2 – TRAIL-R IL-1(B) – TP53

BCL-2 – IAP(BIRC4) Calpain2 – TrkA IL-1(B) – TRAIL-R
BCL-2 – IKK Cn(CHP) – IKK IL-1R(1) – IRAK2

BCL-2 – IL-1R(1) Cn(CHP) – IL-1R(1) IL-1R(1) – IRAK4
BCL-2 – NGF Cn(CHP) – IRAK4 IL-1R(1) – IκBα

BCL-2 – PI3K(PIK3R1) Cn(CHP) – NF-κB(NFKB1) IL-1R(1) – PI3K(PIK3R1)
BCL-2 – TRAIL Cn(CHP) – PI3K(PIK3CG) IL-1R(RAP) – IκBα

BCL-2 – TRAIL-R Cn(CHP2) – IAP(BIRC4) IL-1R(RAP) – TP53
BCL-XL – CASP6 Cn(CHP2) – IL-1R(RAP) IL-3 – NF-κB(NFKB1)
BCL-XL – CASP7 Cn(CHP2) – NF-κB(NFKB1) IL-3 – PI3K(PIK3R2)
BCL-XL – Cn(CHP) Cn(CHP2) – NGF IL-3 – TNFα

BCL-XL – Cn(PPP3CA) Cn(CHP2) – PI3K(PIK3CA) IL-3 – TRAF2
BCL-XL – IAP(BIRC2) Cn(CHP2) – PRKACA IL-3R – NGF
BCL-XL – IAP(BIRC3) Cn(PPP3CA) – Cn(PPP3R1) IL-3R – TNF-R1

BCL-XL – IKK Cn(PPP3CA) – FADD IL-3R – TRAF2
BCL-XL – NF-κB(NFKB1) Cn(PPP3CA) – IAP(BIRC2) IL-3R – TrkA

BCL-XL – NGF Cn(PPP3CA) – IAP(BIRC3) IRAK2 – NF-κB(NFKB1)
BCL-XL – TRAF2 Cn(PPP3CA) – IL-1(A) IRAK2 – TRAF2
BCL-XL – TRAIL Cn(PPP3CA) – IL-1(B) IRAK4 – PI3K(PIK3R2)
BCL-XL – TrkA Cn(PPP3CA) – IL-1R(1) IRAK4 – TP53
BID – CASP7 Cn(PPP3CA) – IRAK4 IRAK4 – TRAF2

BID – Cn(CHP2) Cn(PPP3CA) – IκBα IRAK4 – TrkA
BID – Cn(PPP3CA) Cn(PPP3CA) – MyD88 IκBα – PI3K(PIK3CA)
BID – Cn(PPP3R1) Cn(PPP3CA) – NGF IκBα – TrkA

BID – IKK Cn(PPP3CA) – PI3K(PIK3CA) MyD88 – TP53
BID – IRAK4 Cn(PPP3CA) – PI3K(PIK3CG) MyD88 – TrkA
BID – MyD88 Cn(PPP3CA) – TP53 NF-κB(NFKB1) – NF-κB(RELA)

BID – NF-κB(RELA) Cn(PPP3CA) – TRAF2 NF-κB(NFKB1) – TNFα
BID – PI3K(PIK3CA) Cn(PPP3CA) – TRAIL NF-κB(RELA) – TNFα

BID – TP53 Cn(PPP3CA) – TrkA NF-κB(RELA) – TP53
BID – TRAIL Cn(PPP3R1) – CytC NF-κB(RELA) – TRAF2
BID – TrkA Cn(PPP3R1) – DFF40 NF-κB(RELA) – TRAIL
Bax – CASP7 Cn(PPP3R1) – IAP(BIRC4) NF-κB(RELA) – TrkA
Bax – CASP8 Cn(PPP3R1) – IKK NGF – PI3K(PIK3R1)
Bax – CytC Cn(PPP3R1) – IL-1(B) NGF – TP53
Bax – Fas Cn(PPP3R1) – IκBα PI3K(PIK3CA) – PI3K(PIK3CG)

Bax – IAP(BIRC2) Cn(PPP3R1) – NF-κB(NFKB1) PI3K(PIK3CA) – PI3K(PIK3R1)
Bax – IAP(BIRC3) Cn(PPP3R1) – PI3K(PIK3CA) PI3K(PIK3CA) – TP53
Bax – IAP(BIRC4) Cn(PPP3R1) – TNF-R1 PI3K(PIK3CA) – TRAF2
Bax – IL-1R(RAP) Cn(PPP3R1) – TP53 PI3K(PIK3CA) – TrkA

Bax – IL-3 Cn(PPP3R1) – TRAF2 PI3K(PIK3R1) – PI3K(PIK3R2)
Bax – MyD88 Cn(PPP3R1) – TrkA PI3K(PIK3R1) – TNF-R1

Bax – NF-κB(RELA) CytC – FADD PI3K(PIK3R1) – TNFα
Bax – PI3K(PIK3R1) CytC – TP53 PI3K(PIK3R1) – TP53

Bax – TNF-R1 DFF40 – IL-3 PI3K(PIK3R1) – TRADD
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Table 9.2 (continue)
Bax – TP53 DFF40 – MyD88 PI3K(PIK3R1) – TRAF2

Bax – TRADD DFF40 – PI3K(PIK3CA) PI3K(PIK3R1) – TRAIL
Bax – TRAIL-R DFF40 – PI3K(PIK3R1) PI3K(PIK3R2) – TNF-R1
CASP3 – CASP7 DFF40 – TrkA PI3K(PIK3R2) – TRAF2
CASP3 – Calpain2 DFF45 – IAP(BIRC2) PI3K(PIK3R2) – TRAIL
CASP3 – Cn(CHP2) DFF45 – NF-κB(NFKB1) PI3K(PIK3R2) – TrkA

CASP3 – Cn(PPP3R1) DFF45 – NGF PRKACA – TRAIL-R
CASP3 – IL-1(A) DFF45 – PI3K(PIK3CA) TNFα – TP53
CASP3 – IL-1(B) DFF45 – PI3K(PIK3R1) TNFα – TrkA
CASP3 – IL-1R(1) DFF45 – PRKACA TP53 – TRAF2
CASP3 – IRAK2 FADD – IAP(BIRC4) TP53 – TRAIL-R

CASP3 – NF-κB(NFKB1) FADD – IL-1(A) TRAF2 – TRAIL
CASP3 – NF-κB(RELA) FADD – NGF TRAIL – TrkA

CASP3 – NGF FADD – PI3K(PIK3CA) TRAIL-R – TrkA
CASP3 – PI3K(PIK3CA) FADD – PRKAR2A

(e) The true-positive list of Consensus predictions
AKT2 – CASP3 CASP7 – TNF-R1 IAP(BIRC2) – CASP9

AKT2 – IAP(BIRC4) CASP8 – CASP3 IAP(BIRC2) – IKK
APAF1 – BCL-XL CASP8 – CASP7 IAP(BIRC3) – CASP7
APAF1 – CASP3 CASP8 – CASP9 IAP(BIRC3) – CASP9
APAF1 – CASP9 CASP8 – FADD IAP(BIRC3) – TRAF2
BCL-2 – BID CASP8 – FLIP IAP(BIRC4) – AKT2

BCL-XL – APAF1 CASP8 – IAP(BIRC4) IAP(BIRC4) – CASP3
BCL-XL – TP53 CASP8 – TRAF2 IAP(BIRC4) – CASP7
BID – BCL-2 CASP9 – APAF1 IAP(BIRC4) – CASP8
BID – Fas CASP9 – CASP3 IAP(BIRC4) – CASP9

CASP3 – AKT2 CASP9 – CASP7 IKK – IAP(BIRC2)
CASP3 – APAF1 CASP9 – CASP8 IL-1(B) – IL-1R(1)
CASP3 – CASP8 CASP9 – IAP(BIRC2) IL-1R(1) – IL-1(B)
CASP3 – CASP9 CASP9 – IAP(BIRC3) PI3K(PIK3R1) – TrkA

CASP3 – Cn(PPP3CA) CASP9 – IAP(BIRC4) TNF-R1 – CASP7
CASP3 – FLIP Cn(PPP3CA) – CASP3 TP53 – BCL-XL

CASP3 – IAP(BIRC2) FADD – CASP8 TRAF2 – CASP8
CASP3 – IAP(BIRC4) FADD – TRAIL TRAF2 – IAP(BIRC3)

CASP7 – CASP8 FLIP – CASP3 TRAIL – FADD
CASP7 – CASP9 FLIP – CASP8 TRAIL – TRAIL-R

CASP7 – IAP(BIRC2) Fas – BID TRAIL-R – TRAIL
CASP7 – IAP(BIRC3) IAP(BIRC2) – CASP3 TrkA – PI3K(PIK3R1)
CASP7 – IAP(BIRC4) IAP(BIRC2) – CASP7

(f) The false-positive list of Consensus predictions
AKT1 – Fas Cn(PPP3CA) – BCL-XL NF-κB(NFKB1) – CASP7
AKT2 – IL-3 Cn(PPP3CA) – BID NF-κB(NFKB1) – IKK
APAF1 – Bax Cn(PPP3CA) – CASP8 NF-κB(RELA) – CASP7

APAF1 – CASP7 Cn(PPP3CA) – IAP(BIRC2) NGF – BCL-2
APAF1 – IKK Cn(PPP3CA) – MyD88 NGF – CASP7

APAF1 – PI3K(PIK3R1) Cn(PPP3CA) – TP53 NGF – IAP(BIRC3)
APAF1 – TRAF2 Cn(PPP3CA) – TRAF2 PI3K(PIK3CA) – CASP7
BCL-2 – IKK Cn(PPP3R1) – DFF40 PI3K(PIK3CA) – FADD
BCL-2 – NGF CytC – CASP7 PI3K(PIK3R1) – APAF1

BCL-2 – PI3K(PIK3R1) DFF40 – Cn(PPP3R1) PI3K(PIK3R1) – BCL-2
BCL-XL – Cn(PPP3CA) DFF40 – MyD88 PI3K(PIK3R1) – CASP7

BCL-XL – IKK DFF45 – PI3K(PIK3R1) PI3K(PIK3R1) – CASP8
BCL-XL – TRAF2 FADD – CASP7 PI3K(PIK3R1) – DFF45

BID – CASP7 FADD – PI3K(PIK3CA) PI3K(PIK3R1) – IKK
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Table 9.2 (continue)
BID – Cn(PPP3CA) Fas – AKT1 PI3K(PIK3R1) – TNF-R1

BID – IKK Fas – Bax PI3K(PIK3R1) – TRAF2
Bax – APAF1 Fas – CASP7 PI3K(PIK3R2) – CASP3
Bax – Fas Fas – TP53 PI3K(PIK3R2) – TNF-R1

Bax – IAP(BIRC4) IAP(BIRC2) – Cn(PPP3CA) PI3K(PIK3R2) – TRAF2
Bax – MyD88 IAP(BIRC3) – CASP8 TNF-R1 – IL-3R

CASP3 – CASP7 IAP(BIRC3) – NGF TNF-R1 – PI3K(PIK3R1)
CASP3 – NF-κB(NFKB1) IAP(BIRC4) – Bax TNF-R1 – PI3K(PIK3R2)
CASP3 – PI3K(PIK3R2) IAP(BIRC4) – MyD88 TNFα – CASP7

CASP3 – TRAF2 IAP(BIRC4) – TRADD TNFα – CASP9
CASP6 – CASP7 IKK – APAF1 TP53 – Cn(PPP3CA)
CASP6 – IKK IKK – BCL-2 TP53 – Fas

CASP7 – APAF1 IKK – BCL-XL TP53 – IKK
CASP7 – BID IKK – BID TP53 – TRAF2

CASP7 – CASP3 IKK – CASP6 TP53 – TRAIL-R
CASP7 – CASP6 IKK – MyD88 TRADD – IAP(BIRC4)
CASP7 – CytC IKK – NF-κB(NFKB1) TRAF2 – APAF1
CASP7 – FADD IKK – PI3K(PIK3R1) TRAF2 – BCL-XL
CASP7 – Fas IKK – TP53 TRAF2 – CASP3

CASP7 – MyD88 IKK – TRAF2 TRAF2 – CASP7
CASP7 – NF-κB(NFKB1) IL-3 – AKT2 TRAF2 – Cn(PPP3CA)
CASP7 – NF-κB(RELA) IL-3 – TRAF2 TRAF2 – IKK

CASP7 – NGF IL-3R – TNF-R1 TRAF2 – IL-3
CASP7 – PI3K(PIK3CA) IL-3R – TRAF2 TRAF2 – IL-3R
CASP7 – PI3K(PIK3R1) IRAK2 – CASP9 TRAF2 – PI3K(PIK3R1)

CASP7 – TNFα MyD88 – Bax TRAF2 – PI3K(PIK3R2)
CASP7 – TRAF2 MyD88 – CASP7 TRAF2 – TP53

CASP8 – Cn(PPP3CA) MyD88 – Cn(PPP3CA) TRAIL-R – TP53
CASP8 – IAP(BIRC3) MyD88 – DFF40 TRAIL-R – TrkA

CASP8 – PI3K(PIK3R1) MyD88 – IAP(BIRC4) TrkA – TRAIL-R
CASP9 – IRAK2 MyD88 – IKK
CASP9 – TNFα NF-κB(NFKB1) – CASP3

Note: The abbreviations used are: AIF, apoptosis-inducing factor, mitochondrion-associated, 1 (AIFM1); AKT1,

RACalpha serine/threonine-protein kinase; AKT2, RAC-beta serine/threonine-protein kinase; AKT3, RAC-gamma

serine/threonine-protein kinase; APAF1, apoptotic peptidase activating factor 1; BCL-2, B-cell lymphoma 2; BCL-XL,

BCL extra-large; BID, BH3 interacting domain death agonist; Bax, BCL-2-associated X protein; CASP3/6/7/8/9,

caspase-3/6/7/8/9; Cn(CHP), calcineurin B homologous protein 1; Cn(CHP2), calcineurin B homologous protein 2;

Cn(PPP3CA), protein phosphatase 3 catalytic subunit alpha isoform; Cn(PPP3R1), protein phosphatase 3 regulatory

subunit 1; CytC, cytochrome C; DFF40, DNA fragmentation factor, 40kDa, beta polypeptide; DFF45, DNA fragmenta-

tion factor, 45kDa, alpha polypeptide; FADD, Fas-associated via death domain; FLIP, FLICE/CASP8 inhibitory protein

(CASP8 and FADD-like apoptosis regulator, CFLAR); Fas, tumor necrosis factor receptor (TNF) superfamily member 6;

IAP, inhibitor of apoptosis; BIRC2/3/4, baculoviral IAP repeat-containing protein 2/3/4; IκBα, nuclear factor of kappa

light polypeptide gene enhancer in B-cells inhibitor alpha; IKK, inhibitor of nuclear factor kappa-B kinase; IL-1(A),

interleukin-1 alpha; IL-1(B), interleukin-1 beta; IL-1R(1), type 1 interleukin-1 receptor; IL- 1R(RAP), interleukin-1 re-

ceptor accessory protein; IL-3, interleukin-3; IL-3R, interleukin-3 receptor; IRAK2/4, interleukin-1 receptor-associated

kinase 2/4; MyD88, myeloid differentiation primary response protein MyD88; NF-κB(NFKB1), nuclear factor of kappa

light polypeptide gene enhancer in B-cells; NF-κB(RELA), nuclear factor of kappa light polypeptide gene enhancer in

B-cells 3; NGF, nerve growth factor (beta polypeptide); PI3K, phosphatidylinositide 3-kinase; PIK3CA, PI3K subunit al-

pha; PIK3CG, PI3K subunit gamma; PIK3R1, PI3K regulatory subunit alpha; PIK3R2, PI3K regulatory subunit beta;

PRKACA, cyclic adenosine monophosphate (cAMP)-dependent protein kinase catalytic subunit alpha; PRKAR2A,

cAMP-dependent protein kinase type II-alpha regulatory subunit; TNFα, tumor necrosis factor; TNF-R1, TNF recep-

tor superfamily member 1A; TP53, cellular tumor antigen p53; TRADD, TNF receptor type 1-associated death domain

protein; TRAF2, TNF receptor-associated factor 2; TRAIL, TNF receptor superfamily member 10; TRAIL-R, TNF

receptor superfamily member 10B; TrkA, neurotrophic tyrosine kinase receptor type 1.
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Fig. 9.1 (c) shows the prediction obtained on consensus between PRISM (a) and

MEGADOCK (b); notably, the number of FP samples greatly decreased. The first

row of Table 9.1 shows that the consensus method obtained an F-measure value of

0.285, which was comparable to the PRISM result (F-measure = 0.296). The consensus

prediction indicated a higher value of precision for the consensus method (0.333) than

for PRISM (0.231). The consensus method yielded the highest precision value in the

method shown in Table 9.1. This method is useful when validating unknown PPI

predictions using biological experiments. In contrast, OR prediction demonstrated

high recall (Table 9.1). Thus, the OR method will be useful when prediction with high

sensitivity, e.g., in the initial construction of the draft PPI network from the relevant

proteins, is required.

9.3.3 Relationship between the number of predicted positives

and the number of structures

The structure-based PPI prediction method may generate positives with some bias

regarding the type of proteins (rows and columns of Fig. 9.1). From Table 1 and

Fig. 9.1, predictions with a large number of protein structures tend to generate more

positive pairs. To verify this tendency, the number of PDB chain structures used for

PPI prediction and the number of positive predicted pairs containing its protein are

plotted in Fig. 9.3. The #TPs are shown in Fig. 9.3 (a) and the #FPs are shown in

Fig. 9.3 (b). Pearson’s correlation coefficient R and the P -value for the correlation

coefficient t-test are shown in Table 9.3.

From the results of the t-tests, the number of chains and the number of positive

predictions were clearly correlated with P < 0.05 in all cases, which suggests that

the structure-based PPI prediction method should address the number of used protein

structures without bias. For example, in a template matching-based method such as

PRISM, a protein pair with more conformations of structures will have more matches

in template complexes and a higher possibility of predicted interaction. In Table 9.3,

the correlation coefficient values are particularly high in FP predictions. Therefore, for

more precise prediction, we should consider one of the two ways: (i) how to generate the

target set without multiple conformations in each protein and (ii) develop a correction

method when the target set contains multiple conformations.
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Figure 9.3: Number of PDB chains vs. positive predictions. (a) Shows the number of
true-positives and (b) shows the number of false-positives. The horizontal axis is the
number of PDB chains used in the interaction prediction, and the vertical axis is the
number of positives predicted by using protein structures.

Table 9.3: Pearson’s correlation coefficient R and P -value of correlation test on Fig. 9.3

Method (a) #TPs (b) #FPs
R P -value R P -value

Consensus 0.477 1.784× 10−4 0.594 1.121× 10−6

PRISM 0.342 9.259× 10−3 0.415 1.316× 10−3

MEGADOCK 0.488 1.167× 10−4 0.864 4.602× 10−18
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9.3.4 Performance evaluation with various sensitivity param-

eters

In this study, we used a fixed threshold value for MEGADOCK that provided the

best F-measure value for the target dataset. Fig. 9.4 shows a plot of precision vs.

F-measure value for prediction results with various threshold values for MEGADOCK.

Fig. 9.4 also plots the performance of the consensus method with various threshold

values for MEGADOCK prediction while the threshold value for PRISM prediction

was fixed. When the threshold value was changed in MEGADOCK, the plotted values

remained in the region of low precision (0.0–0.2), and lower F-measure values were

observed in the region of higher precision because of the decreased recall value. The

consensus prediction method maintained a stable F-measure value when the value of

precision was approximately 0.2–0.3, although the performance in the high-precision

region (> 0.4) was inferior to that of MEGADOCK. In this region, the consensus

prediction provides a better precision value than PRISM while maintaining the same

F-measure value. Fig. 9.4 clearly shows that the performance obtained by using the

consensus method is better over a wide range of threshold values than the prediction

obtained using only MEGADOCK.

The AUC, i.e., the area under the ROC curve [85], is a more general and effective

statistical measure. The ROC0.1 curves, which include the ROC curves up to an FP

rate of 0.1, are shown in Fig. 9.5. ROC curves were created by plotting the TP rate

(#TP/(#TP+#FN)) against the FP rate (#FP/(#FP+#TN)). Regions with high

FP rates are not useful for prediction because many FPs are generated, e.g., an FP

rate of 0.2 represents #FP = 292. The ROC0.1 curve was thus considered to favor

methods that produce a high TP rate at low FP rates, and the associated area under

the curve is referred to as AUC0.1. A perfect prediction will produce an AUC0.1 of

(0.1×1 =) 0.1, whereas a random prediction will result in an AUC0.1 of (0.1×0.1/2 =)

0.005. Fig. 9.5 shows that the consensus prediction (AUC0.1 = 0.023) is better than

the MEGADOCK (AUC0.1 = 0.014) and random predictions (AUC0.1 = 0.005).

9.4 Summary

In this study, we propose a new PPI network prediction method based on the con-

sensus between template-based prediction and non-template-based prediction. The

consensus method successfully predicted the PPI network more accurately than the

conventional single template/non-template method. Because such precise prediction
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Figure 9.4: F-measure vs. precision for predictions when the MEGADOCK threshold
parameter is changed in the apoptosis pathway prediction. The green triangle indicates
the results of the PRISM prediction (Table 9.1).

can reduce biological screening costs, it will promote interactome analysis. For further

improvement of prediction performance, it is necessary to further improve the com-

bination of the two techniques, e.g., by using a strategy other than taking a simple

AND/OR consensus. For example, biological information such as biochemical function

and subcellular localization information could be used.
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Chapter 10

Conclusion

10.1 Conclusion

In this thesis, we document a successful PPI network prediction system, MEGA-

DOCK, based on protein tertiary structures. Our scoring function represented three

physico-chemical interaction properties with acceptable accuracy and, as the main re-

sult of this work, decupled the calculation speed when compared with other methods.

In addition, our GPU and parallel implementation achieved 37.0-fold acceleration us-

ing one computing node with three GPUs and worked in high-performance computing

environments equipped with over ten thousands nodes (∼ 25,000 nodes). Based on the

results, MEGADOCK has achieved over 1,000,000-fold acceleration and has made it

possible to predict megaorder PPIs. Below, we describe the contributions provided by

this work.

10.1.1 Contributions

• In Chapter 3, we proposed a novel shape complementarity score function called

real Pairwise Shape Complementarity (rPSC) for FFT-based rigid-body protein–

protein docking calculations. The rPSC function that uses only real number

representations for shape complementarity was correlated with a conventional

score function represented by a complex number. We also proposed a novel de-

solvation free energy function called Receptor Desolvation Free Energy (RDE).

Therefore, it is possible to calculate a total energy score that includes shape com-

plementarity, electrostatic interactions and desolvation effects with only one FFT

correlation. As a result, the proposed method was shown to be 9.8 times faster

than the conventional tool ZDOCK 3.0 while maintaining acceptable docking

143
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prediction accuracies.

• In Chapter 4, we developed MEGADOCK, an exhaustive PPI screening system,

that conducts protein–protein docking and post-analysis with reranking technique

on protein tertiary structural data. For the detection of the relevant interacting

protein pairs, we obtained an F-measure value of 0.231 and achieved better ac-

curacy than the methods without reranking technique when our method was

applied to a subset of a general benchmark dataset.

• In Chapters 5, 6 and 7, we performed real applications in the field of systems bi-

ology. In this study, we applied MEGADOCK to (i) a bacterial chemotaxis path-

way and (ii) a human apoptosis pathway to reconstruct pathways and determine

unknown interactions. In the chemotaxis pathway analysis, all core signaling in-

teractions were correctly predicted with the exception of interactions activated

by protein phosphorylation. In the apoptosis pathway analysis, the prediction

results included several new PPI candidates that might be suitable targets for

drug discovery. In addition, the MEGADOCK was enhanced for RNA, leading

to the development of a protein-RNA interaction prediction system.

• In Chapters 8 and 9, we compared MEGADOCK with other structure-based PPI

screening tools: (i) ZDOCK [33] that has similar scoring functions to MEGA-

DOCK and (ii) PRISM [14] that is a template-based PPI prediction tool. The

predicted interactions generated from MEGADOCK and ZDOCK in chemo-

taxis pathway analysis were slightly different; however when the positive predic-

tions from both tools were combined, the vast majority of relevant interactions

were represented. Indeed, there were only two exceptions, both requiring phos-

phorylation to activate the corresponding interaction. The consensus between

template-based and non-template-based methods successfully predicted the PPI

network more accurately than the conventional single template-/non-template-

based methods. Because such precise prediction reduces biological screening

costs, it should further promote interactome analysis.

• In Appendix A, we implemented our protein–protein docking method to

be suitable for running on supercomputers by using hybrid parallelization

(MPI/OpenMP), where a number of docking processes are distributed among

the nodes by MPI with each docking process that is also calculated in parallel

by threads using OpenMP within one node. This implementation has significant

advantages that (i) save memory space and (ii) avoid a large overhead because of
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handling data communication on numerous core systems such as the K computer

running a flat MPI implementation. As a result, we obtained a strong scaling

value that is a type of evaluation value for parallel efficiency, of over 0.95 out of

a maximum of 1.00 in both K computer and TSUBAME 2.0.

• In Appendix B, we enabled the use of recent computing systems by taking advan-

tage of GPU features. We implemented not only FFT calculations but also gen-

erated grid (voxelization) and rotation of protein structures on GPUs to reduce

the cost of data transfers. As a result, the system achieved 13.9-fold acceleration

using 1 CPU core and 1 GPU, and 37.0-fold acceleration using 12 CPU cores and

3 GPUs by making full use of heterogeneous computing resources.

10.2 Future Work

10.2.1 Improvement of post processing of PPI prediction

Improvement of the accuracy of PPI predictions is an important issue. The following

three different points are considered for further improvement.

1. Optimizing to the threshold parameter E∗. A parameter of the sensitiv-

ity of PPI predictions, E∗, was set up on the basis of optimal F-measure values

through this study. However, the size of a dataset, especially the number of pro-

tein pairs and ratio of positives and negatives, will change the optimal threshold

E∗ that attains the optimal F-measure value. In fact, biological networks like the

PPI network are conjectured to be scale-free [160, 161]. In addition, biological

information such as biochemical function and subcellular localization informa-

tion may be useful. Development of a method for optimizing parameters based

on these points of interest is needed to further improve the prediction accuracy.

2. Correction of the bias from the number of structures. As described in

Chapter 9, the number of false positive predictions is highly correlated with the

number of PDB chain structures used for prediction. We should consider one

of two ways to reduce false positives: (i) how to generate the target set without

multiple conformations in each protein and (ii) develop a correction method when

the target set contains multiple conformations.

3. Considering the post process. In the field of protein tertiary structure pre-

diction and docking prediction, post processing, such as clustering and filtering,
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is commonly used for improvement of performance. For example, Uchikoga, et al.

used an interaction fingerprint (IFP) technique for clustering protein decoys and

succeeded in improving docking predictions [162, 163]. We did not consider this

post process method and adopted only energy reranking for faster calculation

and accepted less improvement of PPI predictions in our pre-experiments. To in-

troduce IFP and other post-process techniques should be considered future work

for further improvement of docking analysis. In addition, we used ZRANK as a

reranking tool through this study, but we need to develop an in-house rerank-

ing tool usable on GPU supercomputers for further acceleration of PPI network

predictions.

10.2.2 Flexible PPI prediction

Considering the flexibility of protein structures and flexible docking represents an

effective solution for improvement of prediction performance, but is computationally

intensive. One possible workaround to this problem is to consider ensemble docking.

In a pre-existing equilibrium model [164], proteins have a steady-state distribution of

tertiary structures, and one such structure corresponds to that of the bound form.

This model explains the structural difference between bound and isolated proteins.

The equilibrium is disrupted by ligand binding and interaction with other proteins. A

possible strategy is to generate structure variations based on the crystallized data by

methods such as normal mode analysis [165, 166] and molecular dynamics to construct

a hypothetical protein structure ensemble, and then use the possible structures in all-

to-all docking. It may also be useful to perform structure sampling if we obtain too

much structure data for one type of protein and would like to reduce the number of

data elements.

10.2.3 More large-scale pathway analysis

An application to more large-scale pathway analysis is also an area we are currently

studying for future work. We are applying our methods to proteins related to the epi-

dermal growth factor receptor (EGFR) signaling pathway. Besides its importance in

the proliferation and function of normal cells, when this pathway is altered, inappro-

priate signaling contributes to the pathogenesis of human cancers [167]. The problem

size is approximately 2,000× 2,000, and the task is well within MEGADOCK’s power.
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10.2.4 Other hardware acceleration

In the present study, we were able to accelerate the protein–protein docking calcula-

tion through GPU implementation (see Appendix B). However, recent supercomputers

equip not only GPUs but MIC architecture, such as the Intel Xeon Phi processor.

The top ranked supercomputer “Tihanhe-2” at the National Super Computer Center

in Guangzhou, China [168], was accelerated by Xeon Phi and achieved 33.9 petaflops.

To expand MEGADOCK to the MIC architecture is considered future work to re-

spond to the changes in the field of high-performance computing. Recent progress of

hardware accelerators is impressive, so improved acceleration by using several hard-

ware accelerators will open up new doors in the world of science and technology by

solving computational complex problems that were previously considered seemingly

impossible.
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Appendix A

MPI/OpenMP Hybrid

Parallelization of Protein–Protein

Docking

A.1 Introduction

The next challenge is to perform interactome level large-scale analysis. In order

to address this problem we proposed a rapid protein–protein docking method and

post-docking analysis [58, 59, 162, 163]. Using this system, we input protein tertiary

structure data to acquire predictions of possible interacting pairs.

For example, when reconstructing the bacterial chemotaxis pathway [23], 101× 101

potential combinations of structures were considered. In the human apoptosis path-

way [114], 158× 158 potential combinations of structures were also considered. In real

biology problems, such as searching for the drug induced pathway of EGFR (Epider-

mal Growth Factor Receptor) signaling, about 200 proteins need to be examined. In

our preliminary survey on the EGFR pathway and related proteins data, we identified

about 2,000 structures corresponding to these proteins. Therefore, the PPI network

prediction system needs to handle about 2,000× 2,000 combinations of protein struc-

tures.

To solve such large-scale problems, a highly efficient computing system is necessary.

High performance computers are currently being developed and built [54]. Some top

ranked supercomputers have shown a peak performance of 33.4 petaflops (Tianhe-2,

National Super Computer Center in Guangzhou, China [168]), 17.6 petaflops (Titan,

Oak Ridge National Laboratory, USA [169]) and 10.5 petaflops (K computer, RIKEN,
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Advanced Institute of Computer Science (AICS), Japan) in November 2013.

We have implemented a protein–protein docking calculation of MEGADOCK suit-

able for running on supercomputers by using hybrid parallelization with MPI and

OpenMP, where a number of docking processes are distributed among the nodes by

MPI with each docking process also calculated in parallel by threads by OpenMP

within one node. Data parallelization showed almost linear scaling up to 24,576 nodes

on K computer (RIKEN AICS, Japan).

We expect the proposed method can be a useful tool in bioinformatics and systems

biology area as a basic tool, assuming we can utilize 10,000 ∼ 100,000 CPU cores.

A.2 Implementation

We implemented MEGADOCK by hybrid parallelization (MPI/OpenMP) in order

to conduct large numbers of docking jobs for PPI network predictions.

The overall procedure of MEGADOCK is shown in Fig. A.1. On the cluster com-

puters, a master node gets a list of protein structures and distributes the docking jobs

to available nodes. Upon docking of receptor and ligand proteins, a ligand protein is

rotated to various orientations and translated in the space around the receptor, which

is fixed during docking calculation, to search for the best scoring positions. These

processes are parallelized by threads.

A.2.1 Hybrid parallelization

Initially, a master node distributes docking jobs to available nodes after obtaining

a list of protein pairs. We parallelized the calculation of each docking processes using

MPI library (Fig. A.1, red colored loop). After one loop of this MPI, we obtain high

scoring poses among all the rotation and translation patterns of assigned protein pairs.

Each docking process in each node is parallelized to threads by OpenMP (Fig. A.1,

blue colored loop). Upon docking, the coordinates of the ligand are repeatedly rotated

and translated to search for a better complex form with the receptor. The calculations

of FFT and inverse FFT for each rotation angle are performed independently. Thus,

using OpenMP loop we calculate high scoring poses for various rotation angles in

parallel.

The implementation is designed to run efficiently on K computer which has 88,128

nodes with 8 cores per node (i.e., total of 705,024 cores). Each node is equipped with

16 GB of memory. Flat MPI is often used for parallel applications. However, using
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Figure A.1: Flow chart of the MEGADOCK docking process. A master node gets
a list of docking targets and distributes each job to the available nodes. Each node
calculates one docking job by thread parallelization.
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flat MPI on numerous core systems like K computer may result in a large overhead

due to handling data communication of ∼700,000 cores. Thus, hybrid parallelization

is efficient on such high performance computing systems.

Reducing usage of memory space is important with systems that have many cores

per node and relatively small memory size. In flat MPI, the docking job of each protein

pair is assigned to each core. Thus, each core requires memory space for input/output

data. If a node has n cores, the memory space in the node should be large enough to

keep data for n pairs of proteins (in the case of K computer, n = 8). In contrast, by

implementing hybrid parallelization, we assign one protein pair to each node and then

distribute the calculations of ligand rotation by thread parallelization. As such, each

node will keep data of one pair of proteins on the memory and threads will share the

input/output data on the memory. The memory size needed for docking is dependent

on protein size. This implementation is feasible when considering calculations of large

proteins. Thus, we implemented MEGADOCK by hybrid parallelization.

A.3 Results and Discussion

A.3.1 Dataset

We used a general benchmark dataset for protein docking (protein–protein docking

benchmark 4.0, [82]). For measuring thread parallel scalability, we conducted dockings

of a protein complex from PDB, 1ACB (chain E and I). The size of FFT is N = 108

in this case. Parallel scalability over nodes using MPI was measured by conducting

exhaustive docking of 220 different proteins (220× 220 dockings), with an FFT size of

N = 140.

A.3.2 Test environment

Parallel scalability of MEGADOCK was measured on two supercomputing environ-

ments, TSUBAME (Tokyo Institute of Technology Global Scientific Information and

Computing Center (GSIC), Japan) and K computer (RIKEN AICS, Japan). The most

abundant node type of TSUBAME had an Intel Xeon 5670, 2.93 GHz processor, 12

cores. Each node is capable of up to 24 threads of computation by using the hyper

threading technique. K computer has Fujitsu SPARC64 VIIIfx CPUs, 2 GHz, 8 cores.



A. MPI/OpenMP Hybrid Parallelization 155

A.3.3 Calculation speedup

The dataset includes proteins of various size (see Chapter 3, Fig. 3.3). The time

required for each docking calculation is dependent on protein size. For example, a

protein that requires size 120 FFT calculations (1E96) gave a calculation time of about

547 seconds. Smaller sized protein pairs, such as size 80 FFT (1GCQ) were calculated

in about 155 seconds. This variation in calculation time reflects the difference of FFT

calculation (size 120 × 120 × 120 and 80 × 80 × 80). The smaller protein pair (size

80 FFT) takes about 0.28 times the elapsed time compared to the larger protein pair

(size 120 FFT). This ratio of elapsed time is reasonable. In theory FFT takes the

order of O(N3 logN) for calculation. Therefore calculations involving a size of 80 FFT

should take ∼0.27 times ((803 log 80)/(1203 log 120) = 0.271...) the elapsed time of a

corresponding calculation involving a size of 120 FFT, which is almost the same scale

as the calculation time we measured on TSUBAME.

A.3.4 Parallel scalability

Fig. A.2 shows the thread parallel scalability of MEGADOCK by parallelizing ligand

rotation and FFT calculation. The calculation time is shown as an average of 10

individual docking events with an FFT size of 108 (1ACB chain E and I) from the

benchmark data. We observed a 7.33-fold speedup when using the maximum number

of threads, 8 threads, on K computer compared to a single thread calculation. We

observed a 9.17-fold speedup for 12 threads of calculation and a 10.42-fold speedup

for 24 threads of calculation compared to a single thread calculation. Note that in

TSUBAME system we measured time with hyper threading activated, so number of

threads more than 12 includes slight speedup including this effect.

Fig. A.3 shows a process level parallel scalability of MEGADOCK. On K computer,

where a maximum of 24,576 nodes can be used simultaneously, we measured the time

needed to calculate exhaustive dockings of 220 proteins (220×220 dockings), calculated
with a size of FFT 140. Calculation time using 24,576 nodes was about 3.76-fold faster

than the time needed to solve the same problem on 6,144 (1/4 of 24,576 nodes) nodes.

On TSUBAME, we measured the time needed to calculate exhaustive dockings of 44

proteins (44 × 44 dockings) using up to 400 nodes at a time. Calculation time using

400 nodes was about 3.78-fold faster than that on 100 nodes. MEGADOCK achieved

almost linear scalability on both supercomputing environments.

We used a dataset of similar sized proteins (FFT size 140) for the scalability test.

It is an unrealistic scenario when calculations conducted by each node are almost
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equal. Thus, the only possible overhead by parallelization is the job distribution and

checking by the controller nodes. For real problems, which include simulating dockings

of proteins with a variety of sizes, a more intelligent controller is needed to efficiently

distribute docking tasks according to the protein size.

Another possible improvement to make calculation faster could be on the FFT calcu-

lation. A profiler output showed that about 86.4% of the elapsed time was used by FFT

and inverse FFT calculations (see Chapter 3, Table 3.9). Users can switch the FFT

engine to similar libraries by making small changes to the MEGADOCK source code.

We have tried using FFTE [170], FFTW [83] and FFT function (dvcfm1) in CSSL2

(Fujitsu Ltd., Tokyo, Japan). All three implementations yielded equivalent docking

outputs. The speed of calculation differs depending on the size of the proteins. For

example, CSSL2 was slightly faster than FFTW when applied to FFT size of 128 or

other base 2 FFT calculations. By contrast, FFTW outperformed CSSL2 with dock-

ing simulations involving other sizes of protein. Thus, FFTW may be the function of

choice for applications where the dataset includes proteins of various sizes.

A.4 Summary

In this chapter, we implemented a high-throughput and ultra-fast PPI network pre-

diction system “MEGADOCK” suitable for massively paralleled large-scale analysis

of millions of protein combinations. The docking engine of MEGADOCK was imple-

mented by parallelization techniques and shown to be scalable on massively parallel

computing environments. MEGADOCK is ideally suited to a large-scale computing

system.





Appendix B

Acceleration of Protein-Protein

Docking on GPUs

B.1 Introduction

Recently, graphics processing units (GPUs) have been transformed into powerful

accelerators for general purpose computing. Current GPUs, such as NVIDIA’s Tesla

K20, have excellent power efficiency and their computational power supersedes that

of CPUs. Also, GPU software development tools, such as NVIDIA’s Compute Uni-

fied Device Architecture (CUDA) [171], have been developed and they enable us to

develop GPU applications much easier. Thus the general-purpose computing on GPUs

(GPGPU) techniques have been widely used in various research fields including bioin-

formatics, such as metagenome sequence mapping [172], molecular dynamics simula-

tion [173] and quantum chemistry calculation [174]. Therefore, the MEGADOCK could

be also accelerated using GPU computing techniques.

In this chapter, we mapped the docking calculation of MEGADOCK onto GPUs

and developed fast protein-protein docking software named MEGADOCK-GPU. We

implemented almost all processes of MEGADOCK including “FFT”, “modulation” and

“ligand voxelization”. We also implemented the system for utilizing all CPU cores and

GPUs in a computation node. As results, MEGADOCK-GPU on 12 CPU cores and

3 GPUs achieved a calculation speed that was 37.0 times faster than MEGADOCK

CPU version on 1 CPU core.

159
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B.2 Related Work

A GPU implementation of FFT-based protein-protein docking was already done by

Sukhwani, et al. in 2009 [175]. They mapped a FFT-based protein-protein docking

tool PIPER [29] onto GPUs, and demonstrated a calculation speed that was 17.7 times

faster with 1 GPU than PIPER with 1 CPU core. Sukhwani, et al. used cuFFT li-

brary [176] for mapping FFT processes onto GPUs, and also mapped several processes

onto GPUs. PIPER is a famous docking tool and has shown its good prediction accu-

racy through international benchmarks [177], but it uses 22 energy terms and is much

slower than ZDOCK and MEGADOCK. Therefore, the performance of PIPER is still

insufficient for proteomics-scale studies even with GPUs.

B.3 GPU Acceleration

We developed MEGADOCK-GPU for further acceleration of a protein-protein dock-

ing. For the GPGPU implementation, we used CUDA, which is a platform for GPGPU

provided by NVIDIA. The system requires CUDA version 5.0 or later because older

cuFFT libraries in the previous version of CUDA have problems in the barrier syn-

chronization. We mapped not only the FFT and modulation processes but also the

voxelization and finding the best solutions processes onto GPUs. In the previous work

by Sukhwani, et al., the targeted system has only a GPU card and their implementa-

tion could not utilize multiple GPUs. However, current computing system often has

multiple CPU cores and multiple GPU cards in a computing node. It is thus important

to make full use of such a computing environment, e.g. 12 CPU cores and 3 GPUs.

Therefore, we targeted a computing node with multiple CPU cores and multiple GPU

cards.

B.3.1 Profile of MEGADOCK processes

Fig. B.1 shows the flow of the docking processes of MEGADOCK and Table B.1

shows proportion of docking calculation time for each process of MEGADOCK. This

profile was obtained from the docking calculation for a protein complex (PDB ID:

1ACB, receptor: chain E, 245 residues, ligand: chain I, 70 residues). The FFT size

N of the docking calculation is 108, and it is typical in the current protein structure

database. The profile was taken on Intel Xeon 2.93 GHz, 1 CPU core.

FFT processes (P5+P7) occupy majority (86.1%) of total time. On the other hand,
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Figure B.1: The process flow of FFT-based docking tools.
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Table B.1: The profile of docking calculation on 1 CPU core (PDB ID: 1ACB).

Time (sec.) Ratio (%)
P1. Initialization 0.04 0.0
P2+P3. Receptor processes 0.30 0.1
P4. Ligand rotation & voxelization 9.19 2.7
P5. Forward FFT of a ligand 155.99 46.4
P6. Modulation 33.97 10.1
P7. Inverse FFT 133.68 39.7
P8. Finding the best solutions 3.27 1.0
P9. Post processes 0.00 0.0
Total 336.45 100.0

other calculations such as voxelization and finding the best solutions still consume

considerable time portions. It is because the time of FFT calculation has already been

reduced by employing a simplified scoring function compared with the other docking

software. Thus, even processes other than the FFT calculation must be accelerated

for significant speedup. Assume that 30-fold acceleration is achieved in the FFT and

modulation processes (P5–P7), then estimated time consumption of these processes

will be approximately 10 seconds and the total computation time will be 23 seconds.

As a result, the computation time of ligand voxelization (P4, currently 9.19 seconds

consumed) will occupy about 40% of total time. Therefore, the mapping of almost all

processes, which include ligand voxelization and finding the best solutions, onto GPUs

is obviously crucial for achieving effective acceleration.

B.3.2 Implementation on GPUs

We have implemented the following processes on GPUs, forward FFT of a receptor

(P3), ligand rotation and voxelization (P4), forward FFT of a ligand (P5), modula-

tion (P6), inverse FFT (P7) and finding the best solutions (P8). The details of each

implementation are described in the following.

Ligand voxelization

MEGADOCK sets adequate rPSC score, electrostatics values and desolvation free

energy score on the ligand voxel model in this process. Ligand voxelization is a process

that calculates the distance between the coordinates of an atom and each grid and
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Figure B.2: Assignment of voxels filled by atoms.

assigns a value to each grid within van der Waals radius of the atom (Fig. B.2). The

assignment process can be parallelized for each atom. Because the rPSC score and

desolvation free energy score of a ligand has only binary states (0 or 1) and the elec-

trostatics value of a grid is calculated as accumulative sum of the values of all adjacent

atoms, the calculation order for each atom can be freely exchanged. Therefore, we

could process atoms in parallel and mapped them onto GPUs. Thus, multiple atoms

are simultaneously processed on different GPU cores in this process.

Forward and inverse FFT

For mapping FFT calculations onto GPUs, we used the NVIDIA cuFFT library [176].

Since cuFFT is optimized for FFT bases {2, 3, 5, 7}, MEGADOCK-GPU uses FFT size

N as a multiple of {2, 3, 5, 7}. This issue will be discussed again on section 5.6.3.

Finding the best solutions

In this process, the best docking pose is selected according to the docking score.

This reduction process is also implemented on GPUs. Current MEGADOCK-GPU

only reports a single pose with the best score in a ligand rotation step while original

MEGADOCK can report the n-best poses. However, the other protein-protein docking

software, such as ZDOCK and PIPER, does not have such option, and it is not so crucial
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in a practical case.

Rotation of ligand

In this process, the atom coordinates of a ligand are updated according to a given

rotation matrix. The process for each atom is independent and can be fully parallelized.

We mapped them onto GPUs.

Modulation

The modulation can be independent for each grid, thus we mapped them onto GPUs.

B.3.3 Data transfer

In the previous work by Sukhwani, et al., they implemented the voxelization process

on a CPU because the system needs to perform many FFT calculations and it did not

become a bottleneck. Thus, a voxelized protein structure data had to be transferred

from a host system to GPUs. Previously, we had also performed the voxelization on a

CPU, but the data transfer from a host to GPUs became a bottleneck. Indeed, only

one FFT calculation is required in our system and the data transfer then occupies large

portion of computation time. Thus, we tried to minimize the data transfer. In our

implementation, the transfer of large data from a host to GPUs takes place only once.

The data includes the original atom coordinates of a ligand and Fourier transformed

receptor grid information are transferred at first. In the loop for each ligand rotation

angle, only trivial data transfer is required (12 bytes angular information and 8 bytes

calculation result) because all processes are performed on GPUs.

B.3.4 Using multiple CPU cores and multiple GPUs

The latest computing systems tend to have a powerful computing node composed of

several multicore CPUs and multiple GPU cards. Thus, we implemented our system

to fully use such heterogeneous computing resources. As we mentioned above, the

processes for each ligand rotation are parallelized in our system. For utilizing all

computing resources, we assign the decomposed jobs to multiple GPUs and CPU cores

dynamically using OpenMP. The same number of CPU cores as GPUs is used for

controlling GPU processes but the remaining cores perform docking calculation by

themselves. Thus, 3 CPU cores are used for controlling 3 GPUs and the remaining 9
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Algorithm 1 Parallel algorithm of docking calculation

Require: atom coordinates of receptor R and ligand L, rotational angles of ligand
{θ}, number of CPU cores C, number of GPUs G

Ensure: List of high-score docking poses H
1: Initialization
2: Data transfer to GPU (R,L)
3: R′ ← Voxelization(R)
4: F [R′]← FFT(R′)
5: for each θ by C threads do
6: if thread number < G then
7: processed on GPU
8: else
9: processed on CPU
10: end if
11: Lθ ← Rotation(L, θ)
12: L′

θ ← Voxelization(Lθ)
13: F [L′

θ]← FFT(L′
θ)

14: Mθ ← Modulation(F [R′],F [L′
θ])

15: Scoreθ ← IFFT(Mθ)
16: H ← H∪Max(Scoreθ)
17: end for
18: Post processes

CPU cores are used for docking calculation, when we use a system with 12 CPU cores

and 3 GPUs. Algorithm 1 shows parallel algorithm of docking calculation.

B.4 Evaluation of Performance

B.4.1 Computation environment

All the calculations were conducted on the TSUBAME 2.0 supercomputing system,

Tokyo Institute of Technology, Japan. We used its thin nodes in all experiments. The

specifications of the node are shown in Table B.2.

B.4.2 Dataset

We used 352 protein complex structures retrieved from a standard protein-protein

docking benchmark set (Protein-Protein Docking Benchmark 4.0) [82], which contains

protein structures in both bound and unbound forms. The sizes of the proteins in the
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Table B.2: Computation environment

CPU Intel Xeon X5670 2.93 [GHz] (6 cores)×2
Memory 54 [GB]

OS SUSE Linux Enterprise Server 11 SP1
GPU NVIDIA Tesla M2050×3 (3 GPUs / 1 node)

Compiler Intel C++ Compiler 13.0.0
FFTW FFTW 3.2.2
CUDA CUDA 5.0
cuFFT cuFFT 5.0

dataset are distributed widely and it is a fairly-sampled subset of the current known

protein structure complexes.

B.4.3 Evaluation method

For evaluating calculation time of each system, we performed same docking calcula-

tion for 352 protein pairs three times, and took their average. We used gettimeofday()

function to measure calculation time. There is no difference between the CPU version of

MEGADOCK and the GPU version in the scoring function. Although MEGADOCK-

GPU seldom returned different results from those of the CPU version due to the dif-

ferent precision of numeric calculation between a CPU and a GPU, the difference was

less than 0.001% and negligibly small.

B.5 Results

B.5.1 Comparison of total docking runtime

Table B.3 shows the results of total and average docking calculation time for 352 pro-

tein complexes. MEGADOCK-GPU using 1 CPU core and 1 GPU was 13.9 times faster

than MEGADOCK using 1 CPU core. Also, MEGADOCK-GPU using 12 CPU cores

and 3 GPUs was 37.0 times faster than MEGADOCK using 1 CPU core. MEGADOCK

has been already parallelized using OpenMP and it achieved 8.9-fold speedup using 12

CPU cores. Furthermore, MEGADOCK-GPU using 12 CPU cores and 3 GPUs was

approximately 4.2 times faster than MEGADOCK using 12 CPU cores by fully us-

ing computer resources of a node. One may expect that MEGADOCK-GPU using 12

CPU cores and 3 GPUs may achieve not 37.0-fold but at least 41.7-fold (= 13.9 × 3)
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speedup compared to 1 CPU core, because of using three GPUs. However, the speedup

is not fully proportional because the initialization of GPU cannot be parallelized and

becomes a bottleneck.
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Figure B.3: The distribution of the speedup ratio of MEGADOCK-GPU using 1 CPU
core and 1 GPU compared to MEGADOCK using 1 CPU for different FFT size N .
Horizontal axis shows FFT size N and vertical axis shows the averaged speedup ratio
in protein complexes with same FFT size.

B.5.2 Distribution of computation time for FFT size

Fig. B.3 shows the distribution of the speedup ratio of MEGADOCK-GPU with 1

CPU core and 1 GPU compared to MEGADOCK using 1 CPU core, for each FFT size.

In the figure, the horizontal axis is FFT size N and the vertical axis is an averaged

speedup ratio in the complexes whose FFT size are same. The ratio generally increases

in proportion to the size of FFT. Because, the FFT requires O(N3 logN) calculation

but the processes that are hard to be mapped onto GPUs basically take only O(N).

Thus, the speedup is not large for small N . Within this experiments, the best speedup

ratio was obtained with FFT N = 192 and is 33.7-fold against 1 CPU core.

B.5.3 Speedup on each process

Table B.4 shows the speedup of docking calculation from MEGADOCK using 1 CPU

core to MEGADOCK-GPU using 1 CPU core and 1 GPU, for each process. In the

FFT and modulation processes, better acceleration is achieved. Speedups on the ligand

voxelization and finding the best solutions processes are moderate because they include
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reduction processes. However, we succeeded to reduce data transfer drastically by

mapping these processes onto GPUs. Thus the GPU implementation of these processes

is practically effective. The time of initialization highly increased using a GPU. This

is because the startup time is demanded for initializing a GPU and it is difficult to be

decreased.
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B.6 Discussion

B.6.1 Data transfer time

In this work, we mapped almost all processes of a protein-protein docking calculation

onto GPUs. Also, we succeeded to reduce the amount of data transfer. As results, the

time of data transfer in now only 270 milliseconds is approximately 1.3% of total

docking time in the case of a docking for PDB ID: 1ACB. This is a large advantage to

calculate all processes in a ligand rotation loop on GPUs.

B.6.2 Initialization of GPU

We achieved to reduce computation time of almost all processes in a protein-protein

docking significantly by using GPGPU techniques. As results, the initialization of a

GPU has now become one of the bottlenecks. As shown in Table B.4, the initialization

of a GPU requires approximately 5 seconds and it occupies more than 20% of whole

computation time, because we generate a new process and initialize GPU for each pair

now. However, in the practical application like a protein-protein interaction network

prediction, we have to perform large number of docking calculations for many protein

pairs. Therefore, we have only to initialize GPU once if we modify the system to deal

many docking calculations for multiple protein pairs in a single computing process.

Assume that the time of GPU initialization can be ignorable; the average calculation

time of MEGADOCK-GPU using 12 CPU cores and 3 GPUs will be approximately 15

seconds and it is 50-times faster than that of using 1 CPU core.

B.6.3 Optimization of FFT size

An FFT-based docking tool firstly reads the atom coordinates of a receptor and a

ligand, and determines the grid size fitted for the receptor and ligand. The FFT size

N is proportional to the grid size, which was automatically calculated from the single

grid unit size and the size of proteins. FFTW algorithms [83], which is used in MEGA-

DOCK, are optimized for sizes that represented as a multiple of {2, 3, 5, 7, 11, 13}.
Thus, our algorithm to decide the grid size searches the smallest composite number

consisted of those prime factors.

However, cuFFT algorithms [176], which is used in MEGADOCK-GPU, are opti-

mized for sizes that represented as a multiple of {2, 3, 5, 7}. For the other sizes, slower
algorithm is used. Therefore, we should adjust the grid size to optimal one for the
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cuFFT library. However, in case of using multiple cores and GPUs, MEGADOCK-

GPU uses both the FFTW library for a CPU and the cuFFT library for a GPU.

The best set of prime numbers consisting FFT size N is different between them. We

conducted an investigation of a set of prime numbers as a previous experiment. For

MEGADOCK-GPU, the best results were obtained on a set {2, 3, 5, 7} in both us-

ing 1 CPU core and 1 GPU, and using 12 CPU cores and 3 GPUs. For evaluating

the performances, we used {2, 3, 5, 7} for MEGADOCK-GPU and {2, 3, 5, 7, 11, 13} for
MEGADOCK CPU version.

B.7 Summary

In this chapter, we developed MEGADOCK-GPU and mapped almost all processes

of a protein-protein docking onto GPUs. As a result, the system achieved 13.9-fold

acceleration using 1 CPU core and 1 GPU, and 37.0-fold acceleration using 12 CPU

cores and 3 GPUs by making full use of heterogeneous computing resources.
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A, Azé J, Soner S, Ovali SK, Ozbek P, Tal NB, Haliloglu T, Hwang H, Vreven T,
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