物理化学的相互作用の導入による 網羅的タンパク質間相互作用予測システムの高精度化

 大上
 雅史†
 松崎
 裕介†
 松崎
 由理†

 佐藤
 智之‡
 秋山
 泰†

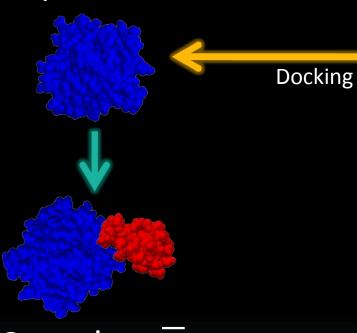
†東京工業大学大学院情報理工学研究科計算工学専攻‡みずほ情報総研株式会社

- 本研究の説明
- タンパク質ドッキングの従来研究
- 網羅的PPI予測とMEGADOCK
- 新形状相補性スコアrPSCの提案
- 静電的相互作用の導入
- 1対1ドッキング予測の性能評価
- 網羅的PPI予測の性能評価
- まとめと今後の課題

本研究について

- タンパク質間相互作用(PPI)ネットワーク
 - 生命現象における中心的役割を担う
 - 創薬ターゲットとして注目されている
 - 計算機によるPPI予測の発展
 - Molecular Dynamics
 - 配列モチーフからの予測
 - 文献情報からの予測
 - Protein Docking
 - 形状相補性に基づいたタンパク質ドッキング
 - タンパク質ドッキングによるPPIネットワーク予測
 - MEGADOCKの改良によるドッキング精度の向上

- 本研究の説明
- タンパク質ドッキングの従来研究
- 網羅的PPI予測とMEGADOCK
- 新形状相補性スコアrPSCの提案
- 静電的相互作用の導入
- 1対1ドッキング予測の性能評価
- 網羅的PPI予測の性能評価
- まとめと今後の課題


タンパク質ドッキング

- 代表的なドッキングソフトウェア
 - MolFit (E. Katchalski-Katzir 1992 \sim)
 - FFT Baseの形状相補性アルゴリズムを提案
 - FTDock (H.A. Gabb 1997)
 - MolFitの形状相補性スコアに静電的効果を追加
 - ZDOCK (Z. Weng 2002~)
 - 形状相補性, 静電, 疎水効果を考慮 (ver.2.3)
 - 自由エネルギー計算のFFTを追加 (ver.3.0)

形状相補性の計算

Recepter Protein \overline{a}

Ligand Protein |b|

Complex \overline{c}

(l,m,n): タンパク質を3次元voxelに 分割したときの1つのvoxel

 (α, β, γ) : Ligandの平行移動

$$\overline{c}_{lpha,eta,\gamma} = \sum_{l=1}^N \sum_{m=1}^N \sum_{n=1}^N \overline{a}_{l,m,n} imes \overline{b}_{l+lpha,m+eta,n+\gamma}$$

畳み込み和で表わされる

MolFit

形状相補性計算にフーリエ変換(DFT)を利用

$$A_{o,p,q} = \mathrm{DFT}\big[\overline{a}_{l,m,n}\big], \quad B_{o,p,q} = \mathrm{DFT}\big[\overline{b}_{l,m,n}\big]$$

$$C_{o,p,q} = A_{o,p,q}^* B_{o,p,q}$$
 $\overline{a}_{l,m,n} = \begin{cases} \rho & \text{inside the Rec.} \\ 0 & \text{outside the Rec.} \end{cases}$

$$\overline{c}_{\!\scriptscriptstyle{lpha,eta,\gamma}} = ext{IDFT}igl[C_{\scriptscriptstyle{o,p,q}}igr]$$

$$\overline{a}_{l,m,n} = \begin{cases}
1 & \text{on the surface of the Rec.} \\
\rho & \text{inside the Rec.} \\
0 & \text{outside the Rec.}
\end{cases}$$

$$\overline{C}_{\alpha,\beta,\gamma} = \mathrm{IDFT} \Big[C_{o,p,q} \Big] \qquad \qquad \overline{b}_{l,m,n} = \begin{cases} 1 & \text{on the surface of the Lig.} \\ \delta & \text{inside the Lig.} \\ 0 & \text{outside the Lig.} \end{cases}$$

K-Kスコア

■ 高速フーリエ変換(FFT)を用いて高速化が可能

$$O(N^6)$$
 $O(N^3 \log N)$

FTDock

- 形状相補性(MolFitと同じ)と静電的相互作用を考慮
- Algorithm (Electrostatics)
 - voxel *i (l,m,n)*の電荷を決定する
 - 規則に従ってタンパク質原子の電荷を付与 q_{atom}
 - voxelに分割 $q_{\text{atom}} \rightarrow q_{l,m,n}$
 - voxel *i* の電界を計算する

$$\varphi_{i} = \sum_{j} \frac{q_{j}}{\varepsilon(r_{ij})r_{ij}} \quad , \qquad \varepsilon(r_{ij}) = \begin{cases} 4: & r_{ij} \leq 6\text{\AA} \\ 38r_{ij} - 224: & 6\text{\AA} < r_{ij} < 8\text{\AA} \end{cases}$$
$$80: & r_{ij} \geq 8\text{\AA}$$

Electrostaticsスコア

minimum cutoff $r_{ij} < 2.0 \text{ Å} \rightarrow r_{ij} = 2.0 \text{ Å}$

$$\text{ Lec. } E^a_{l,m,n} = \begin{cases} \varphi_{l,m,n} \\ 0 \end{cases}$$

Bec. $E_{l,m,n}^a = \begin{cases} \varphi_{l,m,n} & \text{entire grid excluding core} \\ 0 & \text{core of molecule} \end{cases}$

$$E_{l,m,n}^b = q_{l,m,n}^b$$

Complex
$$E^c_{lpha,eta,\gamma}=\sum_{l=1}^N\sum_{m=1}^N\sum_{n=1}^NE^a_{l,m,n}E^b_{l+lpha,m+eta,n+\gamma}$$

ZDOCK

- 形状相補性, 静電的相互作用, 疎水性相互作用(Ver.2.3)
 - Ver.3.0ではさらに計算を複雑化
- 形状相補性にはPSCスコア(pairwise shape complementarity)を使用

$$\Re[\overline{a}_{l,m,n}] = \begin{cases} \# \text{ of R atoms within } (D + R \text{ atom } r) & \text{open space} \\ 0 & \text{otherwise} \end{cases}$$

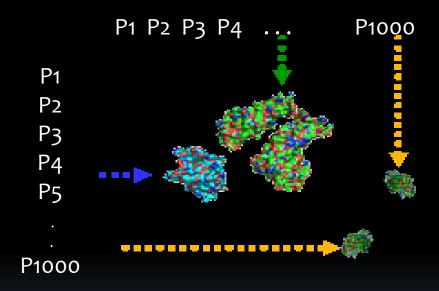
$$\Re[\bar{b}_{l,m,n}] = \begin{cases} 1 & \text{if this grid is the nearest grid of a } L \text{ atom} \\ 0 & \text{otherwise} \end{cases}$$

$$\Im[\bar{a}_{l,m,n}] = \Im[\bar{b}_{l,m,n}] = \begin{cases} 3 & \text{solvent } excluding \text{ surface of the protein} \\ 9 & \text{protein core} \\ 0 & \text{open space} \end{cases}$$

$$Score_{\alpha,\beta,\gamma} = \Re \left[\sum_{l=1}^{N} \sum_{m=1}^{N} \sum_{n=1}^{N} \bar{a}_{l,m,n} \bar{b}_{l+\alpha,m+\beta,n+\gamma} \right]$$

ZDOCK PSC Score

1	2	3	3	3	2	1	
2	(3i)	3i	(3i)	(3i)	(3i)	2	
3	(3i)	9 <i>i</i>	(3i)	3i	(3i)	2	1+3i $1+3i$
3	(3i)	9 <i>i</i>	3i	\	2	1	1+3i $1+3i$ $1+9i$ $1+9i$ $1+3i$
3	(3i)	9 <i>i</i>	(3i)	5	2	1	1+3i $1+3i$ $1+9i$ $1+9i$ $1+3i$
3	(3i)	9 <i>i</i>	(3i)	(3i)	(3i)	2	1+3i $1+3i$
2	(3i)	(3i)	(3i)	(3i)	(3i)	2	
1	2	3	3	3	2	1	


Recepter PSC

Ligand PSC

- 本研究の説明
- タンパク質ドッキングの従来研究
- 網羅的PPI予測とMEGADOCK
- 新形状相補性スコアrPSCの提案
- 静電的相互作用の導入
- 1対1ドッキング予測の性能評価
- 網羅的PPI予測の性能評価
- まとめと今後の課題

all-to-all PPI Prediction

- 網羅的PPI予測
 - 多数のタンパク質からInteractionするペアを予測

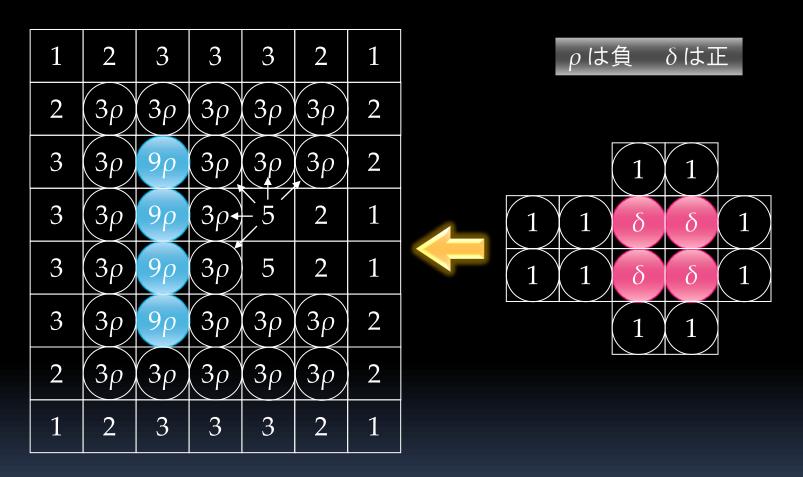
- タンパク質ドッキングによって網羅的PPI予測を行う
 - ▶ 高速に計算できるドッキングシステムの欲求

MEGADOCK System (ver. 1.0)

- all-to-all Dockingを高速に行うためのシステム
 - ■ドッキングに使うフーリエ変換の計算結果をライブラリ化
 - 形状相補性としてK-Kスコアを実装
 - MEGADOCK Ver.1.0 (Y. Akiyama, 2008)
- ZDOCKのPSCを使えることが理想
 - PSCは複素数表現である
 - 他の相互作用を考えた時に複素FFTの回数が増加する
 - 実数表現で性能の良い形状相補性スコアが欲しい
- rPSCスコアの提案

- 本研究の説明
- タンパク質ドッキングの従来研究
- 網羅的PPI予測とMEGADOCK
- 新形状相補性スコアrPSCの提案
- 静電的相互作用の導入
- 1対1ドッキング予測の性能評価
- 網羅的PPI予測の性能評価
- まとめと今後の課題

real Pairwise Shape Complementarity


ZDOCKのPSCを参考に, 実数のみで表現

Rec.
$$\overline{a}_{l,m,n} = \begin{cases} \# \text{ of } R \text{ atoms within } (D+R \text{ atom } r) & \text{open space} \\ 3\rho & \text{solvent } excluding \text{ surface} \\ 9\rho & \text{core of } R \end{cases}$$

Lig.
$$\overline{b}_{l,m,n} = \begin{cases} 0 & \text{solvent } accessible \text{ surface layer} \\ 1 & \text{solvent } excluding \text{ surface layer} \\ \delta & \text{core of } L \\ 0 & \text{open space} \end{cases}$$

$$\overline{c}_{\alpha,\beta,\gamma} = \sum_{l=1}^N \sum_{m=1}^N \sum_{n=1}^N \overline{a}_{l,m,n} \times \overline{b}_{l+\alpha,m+\beta,n+\gamma}$$

rPSC (real Pairwise Shape Complementarity)

Recepter rPSC

Ligand rPSC

PSCとrPSCの比較

Ligand

PSC	Core 1+9 <i>i</i>	Surface 1+3 <i>i</i>	Otherwise 0
Core 9 <i>i</i>	-81	-27	0
Surface 3 <i>i</i>	-27	-9	0
Space near atoms	п	п	0
Otherwise 0	0	0	0

$$\rho = -3$$
 , $\delta = 2$

Ligand

rPSC	Core 2	Surface 1	Otherwise 0
Core -27	-54	-27	0
Surface -9	-18	-9	0
Space near atoms 11	2n	п	0
Otherwise 0	0	0	0

Recepter

Recepter

rPSCの利点

- 実数による表現
 - 虚数項に他の効果を入れられる
 - K-Kスコアよりも精密に形状相補性計算ができる
- 虚数項に何を入れるか
 - □ 静電的相互作用
 - □ 疎水性相互作用
 - ・その他

Dockingを考える上で重要な相互作用

- 本研究の説明
- タンパク質ドッキングの従来研究
- 網羅的PPI予測とMEGADOCK
- 新形状相補性スコアrPSCの提案
- 静電的相互作用の導入
- 1対1ドッキング予測の性能評価
- 網羅的PPI予測の性能評価
- まとめ

- FTDockの電界を利用
 - 静電的相互作用が実数で表現されている
 - rPSCと組み合わせて1回のFFTで計算できる

$$a_{l,m,n} = G_{l,m,n}^{a} + iE_{l,m,n}^{a}$$

$$\bar{b}_{l,m,n} = G_{l,m,n}^{b} + iwE_{l,m,n}^{b}$$

$$\bar{c}_{\alpha,\beta,\gamma} = \sum_{l=1}^{N} \sum_{m=1}^{N} \sum_{n=1}^{N} \left(\bar{a}_{l,m,n} \times \bar{b}_{l+\alpha,m+\beta,n+\gamma} \right)$$

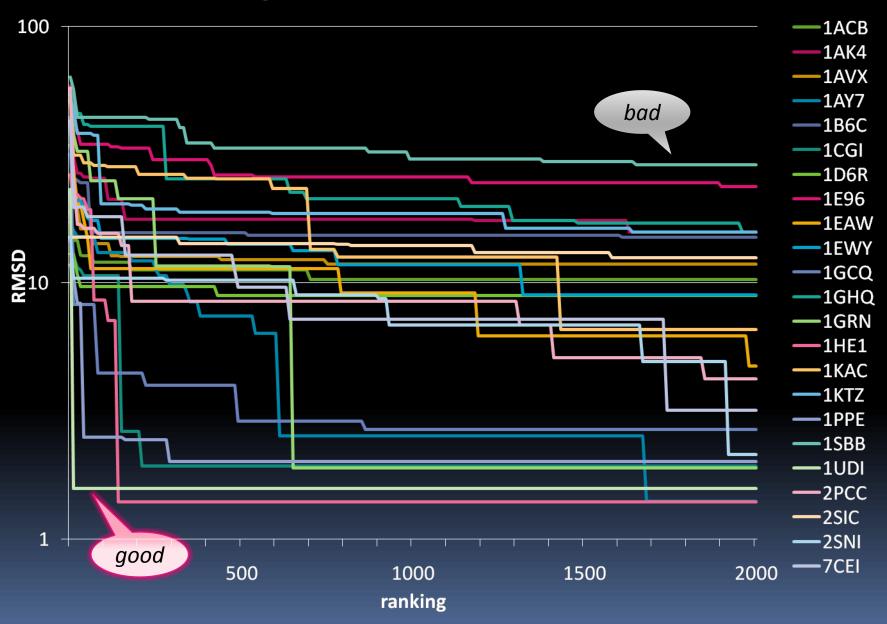
$$Score_{\alpha,\beta,\gamma} = \Re \left[\bar{c}_{\alpha,\beta,\gamma} \right]$$

$$= \sum_{l=1}^{N} \sum_{m=1}^{N} \sum_{n=1}^{N} \left(G_{l,m,n}^{a} G_{l+\alpha,m+\beta,n+\gamma}^{b} - wE_{l,m,n}^{a} E_{l+\alpha,m+\beta,n+\gamma}^{b} \right)$$
rpsc Electrostatics(重み付き)

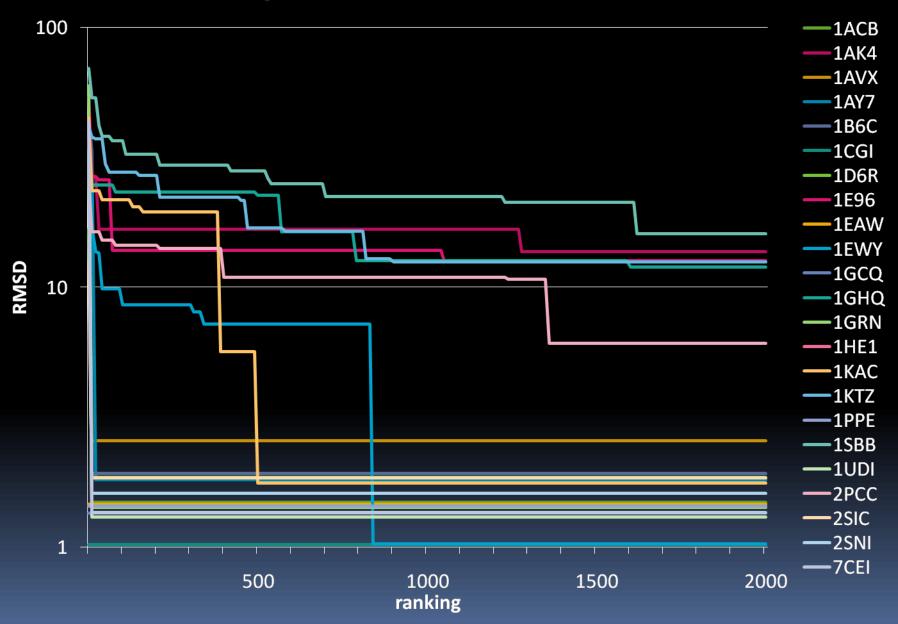
■ 電荷はCHARMM19を用いる

- 本研究の説明
- タンパク質ドッキングの従来研究
- 網羅的PPI予測とMEGADOCK
- 新形状相補性スコアrPSCの提案
- 静電的相互作用の導入
- 1対1ドッキング予測の性能評価
- 網羅的PPI予測の性能評価
- まとめと今後の課題

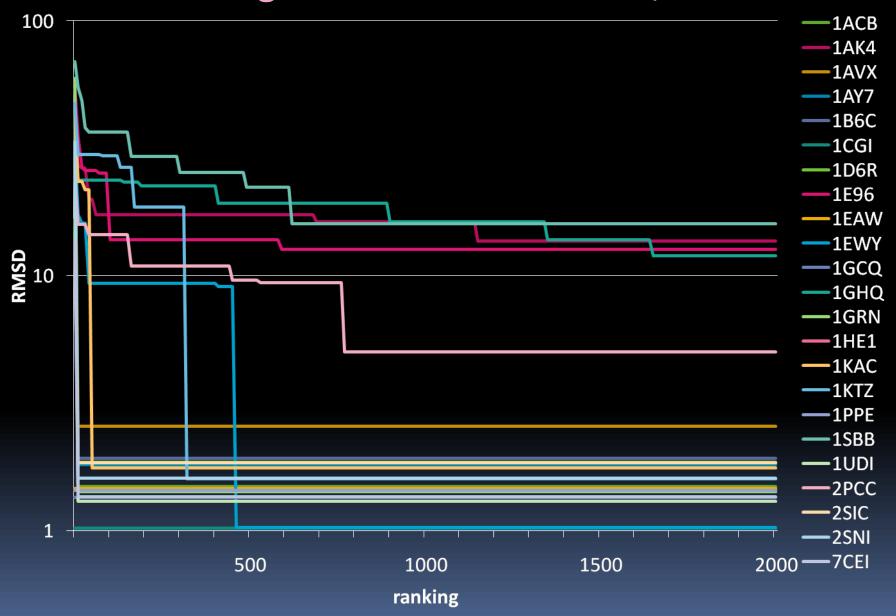
ZDOCK Benchmarkによる評価実験

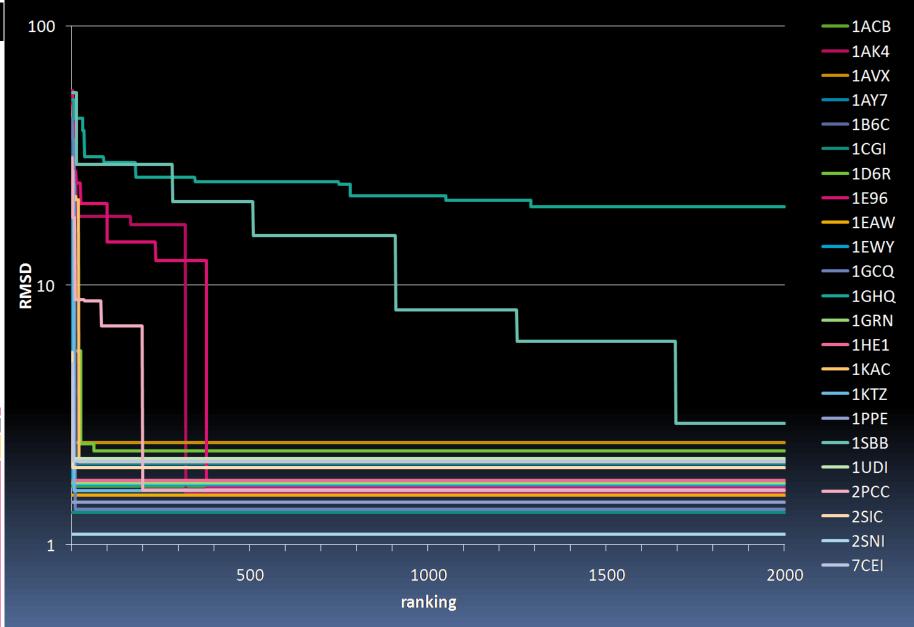

- ZDOCK Benchmark 2.0を利用
 - ■目的:複合体構造の正確な予測(システムの性能評価)
 - □ 対象:23個の複合体(先行研究で評価対象としたサブセット)
 - Docking Software
 - MEGADOCK 1.0 (K-K)
 - MEGADOCK 2.0 (rPSC)
 - MEGADOCK 2.1 (rPSC+Elec)

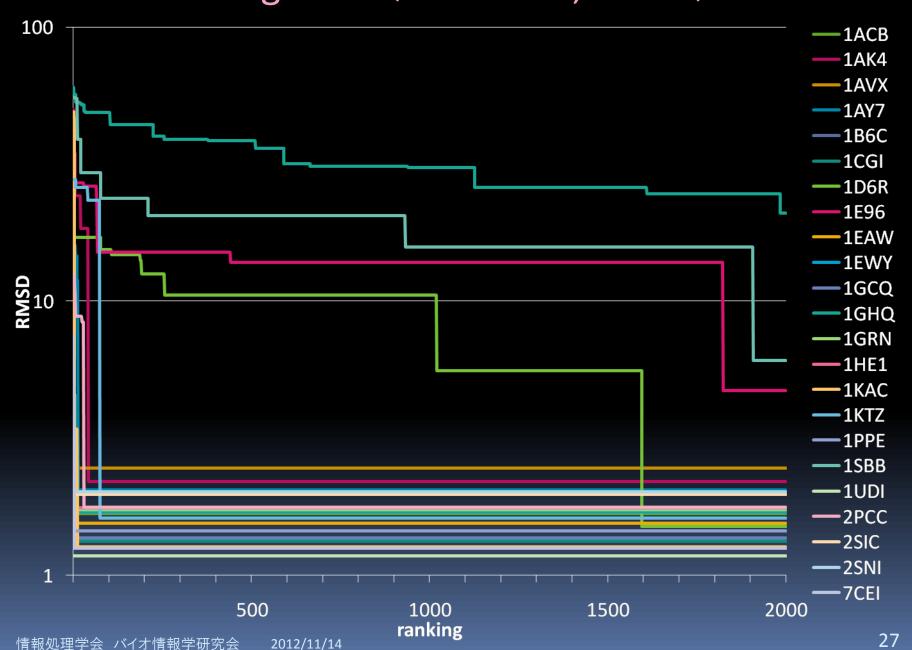
$$\rho$$
 = -3 , δ = 2

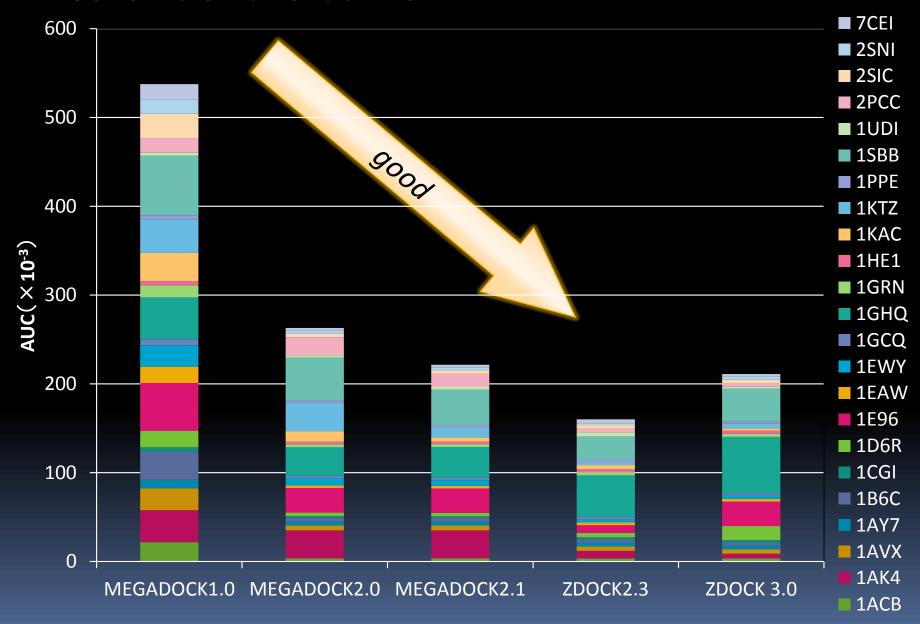

- ZDOCK 2.3
- ZDOCK 3.0
- □ 評価基準
 - 正解構造とのRMSD

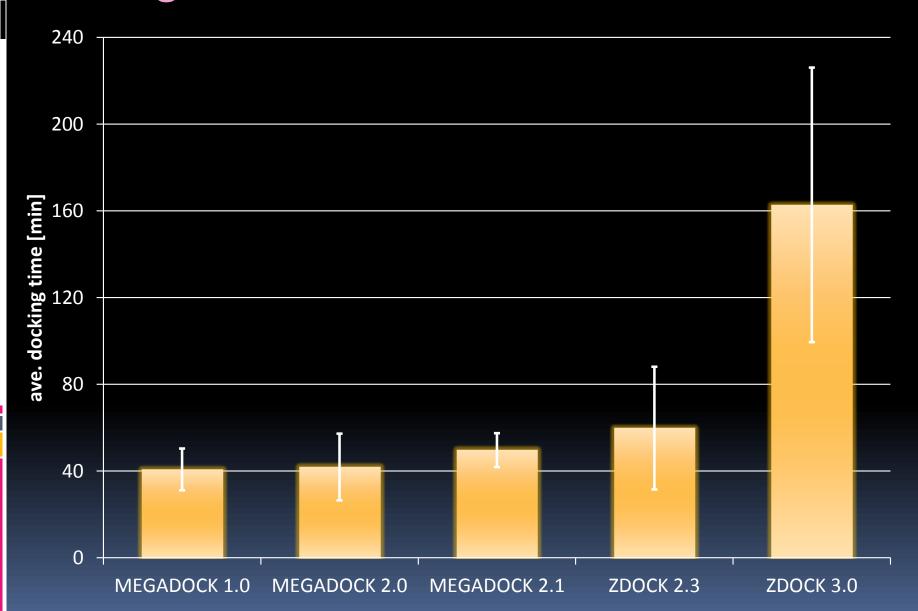
$$RMSD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left\| \mathbf{r}_{i}^{A} - \mathbf{r}_{i}^{B} \right\|^{2}}$$


RMSD – rankingグラフ(MEGADOCK 1.0, bound)


RMSD – rankingグラフ(MEGADOCK 2.0, bound)


RMSD – rankingグラフ(MEGADOCK 2.1, bound)


RMSD – rankingグラフ(ZDOCK 2.3, bound)


RMSD – rankingグラフ(ZDOCK 3.0, bound)

Area Under the Curve

Docking time

1対1ドッキング評価の結論

- MEGADOCKの精度向上
 - Ver.1.0から2.0, 2.0から2.1での精度の改善が見られた
 - ZDOCKに迫る精度が得られた
- 計算時間増加の抑制に成功
 - □ Ver.2.0から2.1では10分程度の増加に抑えられた
 - ZDOCK3.0と比べると3倍高速

- 本研究の説明
- タンパク質ドッキングの従来研究
- 網羅的PPI予測とMEGADOCK
- 新形状相補性スコアrPSCの提案
- 静電的相互作用の導入
- 1対1ドッキング予測の性能評価
- 網羅的PPI予測の性能評価
- まとめと今後の課題

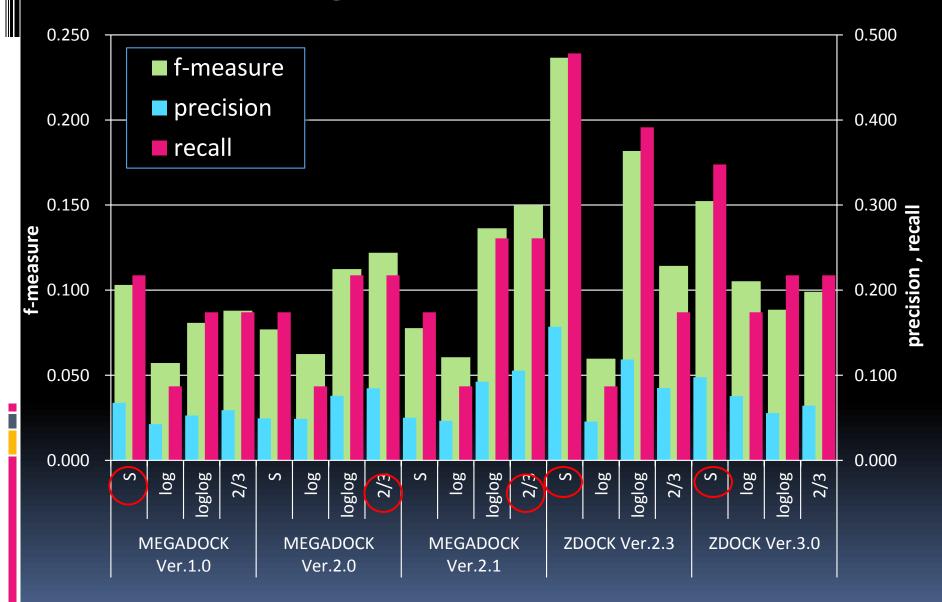
all-to-all Docking Prediction

- ZDOCK Benchmark 2.0
 - ■目的:相互作用相手の予測
 - □ 対象:23個の複合体を総当たり
 - Docking Software
 - MEGADOCK 1.0 (K-K)
 - MEGADOCK 2.0 (rPSC)
 - MEGADOCK 2.1 (rPSC+Elec)
 - ZDOCK 2.3
 - ZDOCK 3.0
 - □ 評価基準
 - 相互作用"する"か"しない"かの判定

相互作用判定基準

■ MEGADOCKの出力する1位の Score S_{ij} を表面積 A_i , A_j で補正

$$\eta_{ij}^{(\log)} = \frac{\log S_{ij}}{\min\{A_i, A_j\}} \qquad \eta_{ij}^{(\log\log)} = \frac{\log\left(\log S_{ij}\right)}{\log\left(\min\{A_i, A_j\}\right)} \qquad \eta_{ij}^{(2/3)} = \frac{\sqrt[3]{S_{ij}^2}}{\min\{A_i, A_j\}}$$



$$z_{ij}^{(n)} = \frac{\eta_{ij}^{(n)} - \mu^{(n)}}{\sigma^{(n)}}$$

z-scoreが1.0より大きければ「ペア(i,j)は相互作用する」

正解ペアは $\{(i,j) \mid i=j\}$ とする. 相互作用判定でTP, FP, FN, TNを求め、f-measureによって性能評価

all-to-all Docking Prediction

all-to-allドッキング評価の結論

- f値による評価
 - MEGADOCKのバージョンアップによる精度向上が確認された
 - スコアを補正することで精度向上
 - MEGADOCKのスコアはタンパク質の大きさに依存している
 - 結果はZDOCKの方がよかった→改良の余地あり

- 本研究の説明
- タンパク質ドッキングの従来研究
- 網羅的PPI予測とMEGADOCK
- 新形状相補性スコアrPSCの提案
- 静電的相互作用の導入
- 1対1ドッキング予測の性能評価
- 網羅的PPI予測の性能評価
- まとめと今後の課題

まとめ

- MEGADOCKにrPSCと静電的相互作用を導入
 - □ 計算時間の増加を抑えつつ性能向上
 - ZDOCK 3.0の精度に近づいた
 - ZDOCK 3.0の3.3倍高速化
 - □ 網羅的PPI予測への適用
 - バージョンアップによる精度向上の確認
 - スコア補正による精度の向上

今後の課題

- rPSCの最適パラメータの推定
 - δ, ρ の精密な推定
- 相互作用判定の改良
 - クラスタリングの利用
 - 我々の先行研究で網羅的PPI予測性能の向上例あり
 - 機械学習の利用
 - ドッキングスコアから機械学習によるルール獲得
 - タンパク質の表面積や体積の情報も加味
- 生物系への適用
 - 大規模な系の相互作用ネットワーク推定へ