
Protein-Protein Docking on
Hardware Accelerators:
Comparison of GPU and MIC Architectures

APBC2015, HsinChu, Taiwan, 23 Jan. 2015

Session 15: Protein Function and Mutation (Part II)

○Takehiro Shimoda, Shuji Suzuki, Masahito Ohue,
Takashi Ishida, Yutaka Akiyama
Department of Computer Science,
Graduate School of Information Science and Engineering,
Tokyo Institute of Technology, Japan

Outline

• Background
– Hardware accelerator
– Protein-protein docking

• Implementation
– GPU implementation
– MIC implementation

• Evaluation experiment

• Summary

2

The Era of Bigdata Bioinformatics
3

Vivien Marx, Nature, 498, 2013
http://www.rcsb.org/pdb/

Data explosion

Require huge computation power!
- High Performance Computing (HPC)

TSUBAME (Tokyo Tech) K computer (RIKEN)

Hardware Accelerator

• Hardware accelerator
– Devices for improving

computation performance

– Mainstream of HPC
• ~40% performance share

in top500 supercomputers

• Examples of hardware accelerators
– Primary accelerators

• GRAPE (for N-body problem, 1989-)

• ClearSpeed (for general purpose, 2003-)

• Cell Accelerator Board (for general purpose, 2006-)

– Currently most efficient accelerators

• GPU (for image processing and general purpose)

• MIC architecture (for general purpose)

4

GPU (NVIDIA Tesla)

MIC (Intel Xeon Phi)

GPU (Graphics Processing Unit)

• Features

– Parallel computation using many small cores

– Merit: high computation performance and power efficiency

– Demerit: requires heavy implementation cost
• Programming of dedicated language, such as CUDA

– CUDA: development environment provided by NVIDIA

• Understanding of complex multi-layered memory architecture

• Consideration of overheads of such data transfer

5

MIC (Many Integrated Core)

• Features

– Merit 1: high computation performance and power efficiency

– Merit 2: lower implementation cost (compared to GPU)
• Not require programming of dedicated language

• Only add OpenMP pragma to use

– Demerit: insufficient related work and references

• Actual performance is unknown

6

CPU MIC

Product Intel Xeon E5-2670 Intel Xeon Phi 5110P

Number of cores 8 60

Theoretical performance [GFLOPS] 332.8 2,021.6

Power consumption [W] 115.0 225.0

Power efficiency [GFLOPS/W] 2.9 9.0

Acceleration of Bioinformatics Applications
by Hardware Accelerators

• GPU
– Genome sequence analysis

• GPU-BLAST
– 3-4 times faster than 1 CPU core by using GPU

• GHOSTM (for Metagenomics)
– 4.2 times faster than competitive CPU application by using GPU

– Protein-protein docking
• PIPER-GPU

– 16 times faster than 1 CPU core by using the GPU

• MEGADOCK-GPU
– 15 times faster than 1 CPU core by using the GPU

– Molecular dynamics simulation
• Conventional MD simulation

– 40 times faster than 1 CPU core by using the GPU

7

J.A. van Meel, et al., Mol Sim, 2008.

B. Sukhwani, et al., GPGPU, 2009.

P. D. Vouzis, et al., Bioinformatics, 2011.

T. Shimoda, et al., ACM-BCB, 2013.

S. Suzuki, et al., PLOS ONE, 2012.

• MIC

– Smith-Waterman algorithm for long DNA sequences
• SWAPHI-LS

– 29 times faster than competitive CPU application by using the MIC

– Genome-wide association study
• SNP-SNP interaction detection

– 15-20 times faster than 1 CPU core by using the MIC

– Virtual screening in drug discovery
• Calculation of the non-bonded interactions

8

Y. Liu, et al., IEEE CLUSTER, 2014.

D. Sluga, et al., BMC Bioinform, 2014.

J. Fang, et al., IWBBIO, 2014.

Acceleration of Bioinformatics Applications
by Hardware Accelerators

Comparison Studies of Hardware Accelerators

• Comparison studies
– Molecular dynamics simulation

• GPU Tesla M2050 vs. MIC Xeon Phi 3120P
– GPU and MIC are almost the same computation time

– Genome-wide association study
• GPU Tesla K20 vs. MIC Xeon Phi 5110P

– GPU is 2 times faster than MIC

– Virtual screening
• GPU Tesla K20X vs. MIC Xeon Phi 5110P

– GPU is 2-4 times faster than MIC

9

D. Sluga, et al., BMC Bioinform, 2014.

J. Fang, et al., IWBBIO, 2014.

W. Qiang, et al., COSMIC, 2013.

Problems of Hardware Acceleration

• Difficult to estimate acceleration effect

– Strongly depends on
characteristics of hardware accelerators and applications

• Comparison studies are still insufficient

– Due to heavy implementation cost

10

More comparison studies are required for selecting the best accelerator

Research Purpose

• Direct comparison of hardware accelerators

– Comparison
• Computation performance

• Implementation cost

– Target accelerators:
• GPU Tesla K20X

• MIC Intel Xeon Phi 5110P

– Target application:
• Real bioinformatics application

– Protein-protein docking (MEGADOCK)

11

2,688 [core] 60 [core]

0.73 [GHz] 1.05 [GHz]

3,935.2 [GFLOPS] 2,021.6 [GFLOPS]

5,760 [MB memory] 7,697 [MB memory]

GPU

Tesla K20X

MIC

Xeon Phi 5110P

Outline

• Background
– Hardware accelerator
– Protein-protein docking

• Implementation
– GPU implementation
– MIC implementation

• Evaluation experiment

• Summary

12

Protein-Protein Docking

• Proteins interact with each other and perform

– Which protein pair interact each other ?

• Prediction using computer

– Protein-protein docking
• Predict complex structure from protein structure

13

Protein pair
Docking calculation

Complex structure

All-to-All Protein-Protein Docking

• FFT-based rigid-body docking
– Takes about 5 minutes for one protein pair

• If target group has 2000 types of proteins

– 5 min * 2000C2→ about 20 years

14

In order to know which protein pair
interact each other,
docking calculations of all pairs are
required.

← Target protein group

Score =
(1×1) + (1×-1) + …

・・・

・・・

Top Score

Detail of Docking Calculation

• Flow of docking calculation

15

Katchalski-Katzir E, et al. PNAS, 1992.

⇧Receptor

⇦Ligand

Faster Docking Method Using FFT

• Bottleneck: Score calculation

– 3-D product & 3-D overlap pattern ⇨
• N is voxel size (about 100 to 300)

• Fast Fourier Transform (FFT)

– FFT reduces computational complexity ⇨

16

③
Convolution

Katchalski-Katzir E, et al. PNAS, 1992.

FFT-based Protein-Protein Docking Applications

• PIPER
– GPU supported (only in part)

– 22 times FFT calculation

• ZDOCK
– High accuracy of docking

– De facto standard of protein-protein docking application

– 7 times FFT calculation

• MEGADOCK
– Faster docking

• Only 1 time FFT calculation

• Docking speed of about 10 times compared with ZDOCK

– OpenMP supported (Parallelization on multi-CPU cores)

17

M. Ohue, et al. Protein Pept Lett, 2014.

J. Mintseris, et al. Proteins, 2007.

D. Kozakov, et al., Proteins, 2006.

Workflow and Time Profile of Docking
18

Workflow of docking Time profile of docking (on CPU core)

Target processes of acceleration

Outline

• Background
– Hardware accelerator
– Protein-protein docking

• Implementation
– GPU implementation
– MIC implementation

• Evaluation experiment

• Summary

19

GPU Implementation:

Rotation and Voxelization

• P4. Ligand rotation & voxelization
– Coordinate transformation of atoms corresponding to the rotation angle

– Voxelization from coordinates and types of atoms

– Both processes are independent for each atom

• Assign to 1 GPU thread on 1 atom

20

T. Shimoda, et al., ACM-BCB, 2013.

GPU Implementation:

Forward and Inverse FFT

• P5 & P7. Forward & Inverse FFT
– 3-dimensional (𝑁 ×𝑁 × 𝑁) complex FFT using NVIDIA CUFFT library

– Optimization of FFT size N

• FFT efficiency depends on bases of FFT size

– CUFFT may drastically slow down on some FFT sizes (especially when N is prime)

– FFT efficiency is higher when

• Decide FFT size N only from the most efficient FFT size set

21

GPU Implementation:

Convolution and Identifying the Best Solutions

• P6. Convolution
– Convolution operation on the Fourier space

• complex conjugate-multiplied
by each element of the FFT output

– Independently for each element
• Assign the 1 GPU thread on 1 element

• P8. Identifying the best solutions
– Identify the highest scores

from output of inverse FFT

– Parallel execution by using reduction algorithm

22

Conv 𝑅, 𝐿 𝑥, 𝑦, 𝑧 = FFT 𝑅 𝑥, 𝑦, 𝑧 × FFT 𝐿 𝑥, 𝑦, 𝑧 ∗

GPU Implementation:

Reduction of Data Transfer

• Minimization of data transfer time
– GPU calculation requires data transfer

– Avoid to transfer large temporary data
• CPU to GPU: Atom data of protein

• GPU to CPU: Best score data

23

Outline

• Background
– Hardware accelerator
– Protein-protein docking

• Implementation
– GPU implementation
– MIC implementation

• Evaluation experiment

• Summary

24

MIC Implementation:

MIC Operation Modes (Offload/Native)

• MIC has 2 operation modes
– Offload mode

• CPU calls MIC for specified process

– Like GPU usage

• Requires description with OpenMP
– Parallelization

– Data transfer

– Native mode

• All processes run on MIC

• Available without any code change
if program is parallelized with OpenMP

25

CPU

MIC

MIC

MIC Implementation:

MIC Operation Modes (Offload/Native)

• Offload mode

– Implementation like GPU

– 240 MIC threads used for 1 protein pair

• Native mode

– No change of code
• MEGADOCK is already OpenMP supported

– 1 MIC thread used for 1 protein pair

– Memory problem
• Many FFT calculations concur

26

MIC Implementation:

Memory Limitation of MIC Native Mode

• Memory capacity and number of MIC threads
– Intel Xeon Phi 5110P has 8 GB memory

– 𝑁 ×𝑁 × 𝑁 3D-FFT requires 16N3 Byte
in each threads

– All MIC threads: 240 threads

• If you use all MIC threads (240 threads):
3D-FFT size N is up to

– Although N is about 100 to 300 in protein-protein docking

• In other words, if you input N=200 of FFT size:
The number of available MIC threads is up to

27

Summary of Implementation

• 3 implementations
– GPU

– MIC (offload)

– MIC (native)

• Scope of parallelization
– One step of ligand rotation loop

• GPU

• MIC (offload)

– Ligand rotation loop

• MIC (native)

28

Outline

• Background
– Hardware accelerator
– Protein-protein docking

• Implementation
– GPU implementation
– MIC implementation

• Evaluation experiment

• Summary

29

Experiment Environment

• 5 computation environments
1. 1 CPU core
2. 8 CPU cores (1 socket)
3. GPU
4. MIC (offload)
5. MIC (native)

• Dataset
– Protein-Protein Docking Benchmark 4.0

• 3 performance comparisons
1. Docking runtime of 352 protein pairs (total runtime)
2. Docking runtime of one protein pair (by problem size)
3. Docking runtime of one protein pair (by process)

• Implementation cost comparison

30

H. Hwang, et al., Proteins, 2012.

CPU GPU MIC

Xeon E5-2670 Tesla K20X Xeon Phi 5110P

Release date 2012 Q1 2013 Q1 2013 Q1

Number of cores 8 2,688 60

Clock [GHz] 2.60 0.73 1.05

Theoretical performance [GFLOPS] 332.8 3,935.2 2,021.6

Accelerator memory [MB] 5,760 7,697

Performance Comparison 1:

Total Runtime

• Total docking runtime of 352 protein pairs

– GPU is 5 times faster than MIC offload mode

– GPU is 3 times faster than MIC native mode

31

A
cc

e
le

ra
ti

o
n

 r
at

e
 f

o
r

1
 C

P
U

 c
o

re

1 CPU core 8 CPU cores GPU MIC offload MIC native

Calculation time [hour] 30.8 4.9 2.0 9.4 6.0

vs. 1 CPU core (1.0x) (6.3x) (15.1x) (3.3x) (5.2x)

Calculation time [sec.] (Acceleration rate for 1 CPU core)

Performance Comparison 2:

Runtime for Each Size of Protein Pairs

• Acceleration rate of each system for each size of protein pair

– GPU: generally higher performance

– MIC (offload): lower performance

– MIC (native): As protein size is larger, performance is lower
• Only limited threads are available due to memory limitation

32

Size: Small
PDB ID: 1GCQ
Receptor (Number of residue):

GRB2 C-ter SH3 domain (57)
Ligand (Number of residue):

Vav N-ter SH3 domain (69)
FFT size: 80×80×80

Size: Middle
PDB ID: 1JK9
Receptor (Number of residue):

CCS metallochaperone (243)
Ligand (Number of residue):

SOD1 superoxide dismutase (153)
FFT size: 128×128×128

Size: Large
PDB ID: 1N2C
Receptor (Number of residue):

Nitrogenase Mo-Fe protein (2000)
Ligand (Number of residue):

Nitrogenase Fe protein (538)
FFT size: 216×216×216

1 CPU core 38.3 (1.0x) 186.4 (1.0x) 1105.6 (1.0x)

8 CPU cores 8.4 (4.6x) 38.5 (4.8x) 177.5 (6.2x)

GPU 5.8 (6.6x) 10.8 (17.3x) 62.2 (17.8x)

MIC offload 58.7 (0.7x) 240 threads 77.0 (2.4x) 240 threads 180.6 (6.1x) 240 threads

MIC native 7.6 (5.0x) 240 threads 26.8 (7.0x) 171 threads 310.5 (3.6x) 38 threads

Calculation time [sec.] (Acceleration rate for 1 CPU core)

Middle LargeSmall

Performance Comparison 3:

Runtime for Each Process

• Acceleration rate of each system in each process

– Target: middle size protein pair
•

– FFT processes:
• GPU: 31 times faster

• MIC (offload): 5 times faster

• MIC (native): 9 times faster

– Data transfer:
• MIC (offload)’s data transfer takes more time than GPU’s one

33

1 CPU core

P1. Initialization 0.0 0.0 0.8 4.0 0.7

P2. Receptor voxelization 0.3 0.3 (1.1x) 0.3 (1.1x) 0.3 (1.1x) 4.4 (0.1x)

P3. Forward FFT of receptor 0.1 0.1 (1.0x) 0.0 (1.7x) 1.0 (0.1x) 0.3 (0.2x)

P4. Ligand rotation & voxelization 12.9 3.4 (3.8x) 2.3 (5.5x) 7.4 (1.7x) 1.2 (11.1x)

P5. Forward FFT of ligand 69.8 14.2 (4.9x) 2.2 (31.1x) 15.1 (4.6x) 7.9 (8.9x)

P6. Convolution 27.4 4.6 (5.9x) 1.1 (25.6x) 13.9 (2.0x) 3.6 (7.7x)

P7. Inverse FFT 71.5 14.1 (5.1x) 2.2 (31.8x) 15.2 (4.7x) 8.3 (8.6x)

P8. Finding best solutions 4.3 1.7 (2.5x) 1.7 (2.5x) 9.8 (0.4x) 0.3 (12.5x)

P9. Post processes 0.0 0.0 0.0 0.0 0.0

 Data transfer 0.6 10.1

Total 186.4 38.5 (4.8x) 10.8 (17.3x) 77.0 (2.4x) 26.8 (7.0x)

Calculation time [sec.] (Acceleration rate for 1 CPU core)

8 CPU cores GPU MIC offload MIC native

Summary of Performance Comparison

• GPU
– Highest performance throughout experiment

• MIC (offload)
– Lower performance

– Cause 1: lower FFT efficiency
• GPU: 31x, MIC (offload): 5x

• FFT part occupies the majority of calculation time

– Cause 2: heavier overheads
• Data transfer takes a lot of time

• MIC (native)
– Moderate performance

– As problem size is larger, performance is lower
• Only limited threads are available due to memory limitation

34

GPU MIC

Tesla K20X Xeon Phi 5110P

3935.2 [GFLOPS] 2021.6 [GFLOPS]

Comparison of Implementation Cost

• GPU
– Heaviest implementation cost

– GPU initialization, memory allocation, data transfer
kernel function (~1,000 lines written in CUDA)

• MIC (offload)
– Lower cost because not require new programming language

– Implementation similar to GPU
(~500 lines written in C++ and OpenMP pragma)

• MIC (native)
– Lowest implementation cost

– Only change compile option, no additional code
• Because MEGADOCK is already supported by OpenMP parallelization

35

Conclusion

• Comparison of acceleration performance and cost
– Target application: FFT-based protein-protein docking

– Target accelerators: GPU, MIC (offload), MIC (native)

• Theoretical difference is about 1.9-fold

• Actual difference
– GPU vs. MIC Offload: 4.6-fold

– GPU vs. MIC Native: 2.9-fold
• If memory limitation problem will be solved, MIC will reach more high-performance.

36

GPU MIC (offload) MIC (native)

Theoretical performance [GFLOPS] 3935.2 2021.6 2021.6

Real acceleration rate (vs. 1 CPU core) 15.1x 3.3x 5.2x

primary factor Higher FFT efficiency
Lower FFT effciency

Data transfer overheads

Limitation of number of

threads due to memory

Implementation cost

Heaviest

Implementation in

CUDA

Medium

Implementation in

C++ and OpenMP

Lower

No additional code

Conclusion

• In acceleration of the FFT-based protein-protein
docking application, GPU is superior than MIC
architecture

– GPU showed higher performance than the theoretical
Flops difference.

– Easiness of MIC native mode is attractive.

– We want 100-fold memory equipped Xeon Phis for
protein-protein dockings!

37

• Akiyama Lab. Members

• This work was supported in part by

– JSPS KAKENHI (238750, 248766, 2630002)

– The Next-Generation Integrated Life Simulation Software Project (ISLiM)

– HPCI System Research Project (hp140173)

– Educational Academy of Computational Life Sciences (ACLS), Tokyo Tech

Acknowledgements
38

TECH chan

