MEGADOCK-GPU:
Acceleration of Protein-Protein Docking
Calculation on GPUs

Takehiro Shimoda, Takashi Ishida, Shuji Suzuki,
Masahito Ohue, Yutaka Akiyama

Department of Computer Science, Graduate School of ‘ THK‘/H TI_:E[-I

Information Science and Engineering, Tokyo Institute of Technology

Outline

* Background

MEGADOCK-GPU

Evaluation of Performance

* Conclusion

Protein-Protein Interaction Network

* Protein-protein interaction (PPI)

— Proteins interact with each other and
make interaction network

* PPl network
— Important for understanding of cell behaviors
— Needs a lot of wet experiments

* Computational prediction method is required C\ ()
& &
N\ _/\
M. N. Wass, et al., Mol. Syst. Biol,, 2011. & "'/'-5\@

Y. Matsuzaki, et al., J. Bioinform. Comput. Biol., 2009. (/% '

Protein-Protein Interaction Prediction

 Computational PPl prediction method

J. Shen, et al., PNAS, 2007.

_ Seq uence baSEd methOd Y. Guo, et al., BMC Research Notes, 2010.

— Domain-domain interaction based method

— StrUCtU re based methOd M. Deng, et al., Genome Research, 2002.

e Structure based method
— Molecular Dynamics (MD)
* High-definition simulation but very slow
— Rigid body protein-protein docking

e Fast but low-definition calculation

Protein-Protein Docking Software

* Protein-protein docking software
— Non-FFT-based

e PATCHDOCK D. Duhovny, et al., Lecture Notes in Computer Science, 2002.

— Geometric hashing

— FFT-based

* /DOCK j. Mintseris, et al., Proteins, 2007.
— High precision docking
— Widely used

* PIPER . Kozakov, et al., Proteins, 2006.
* MEGADOCK

MEGADOCK

M EGA DO C K M. Ohue, et al. Protein & Peptide Letters. (in press)

* Protein-protein interaction prediction system
— For large-scale PPl network
— Using protein-protein docking

* Features
— FFT-based
— Fast
— Open source

PPl Network Prediction Based on Protein-Proteindocking

ocking (-~
ation ™S~y

N
S ZR,
«
@: S; % ZR, Meanof S u
S.D.ofS o

e

Protein j

. JTru fE>FE
PPI(E’J) a {Fal therwise
— = , -
/ _______ - -~
.. / ’
Protein i / PRe
P d
P d
P4
‘\ g
Dockin .. PPI(i,]
.g PPl decision —> (i)
calculation True / False

Docking Calculation Algorithm

* Flow of docking calculation

— Using voxel space Katchalski-Katzir E, et al. PNAS, 1992.

%

{tReceptor

Top Score

Lﬁe
¢

®

Score =
(IX1)+(1%x-1)+..

Fast Docking Calculation Using FFT

* Bottleneck: Score calculation o

— 3-D product & 3-D overlap pattern = O(NG)

* N is voxel size (about 100 to 300)

* Fast Fourier Transform (FFT)
— FFT reduces computational complexity = O(]\f3 log N)

H i ®Forward
B I -
T ©) @Inverse
Modulation FFT Score
@Forward
FET FFT[L]

(@Modulation: complex conjugate & multiplication

Calculation Time

* MEGADOCK compresses 3 energy terms

into only one time FFT calculation

— 1. Shape complementarity
— 2. Hydrophobic interaction
— 3. Electrostatic interaction

e Other docking software needs
many time FFT calculation
— ZDOCK needs 8 times FFT
— PIPER needs 22 times FFT

240

©
(@)

n
oo

Total time for 100 docking [hr]

o

10

Calculation Time

192 fro g

144 |

MEGADOCK ZDOCK 2.3 ZDOCK 3.0

: : 11
Problems: Large calculation time

¢ Ap pl |Cat|0n exam p | e A. Ozbabacan S.E., et al., J. Struct. Biol., 2012.

— Apoptosis pathway dataset
* Includes 158 proteins
 Combination of proteins: 158 X 158 = 24,964 pairs
* Average docking time of 1 pairin 1 CPU core : 12.5 mins
* Runtime: 12.5mins X 24,964 pairs = 217 days

* Faster calculation method is required

Research Purpose

* Purpose

— Acceleration of protein-protein docking
calculation of MEGADOCK

* Approaches

— Acceleration by GPU
1. GPU Implementation of main processes
2. Optimization of FFT size
3. Using full computing resources in a node

12

13
Outline

* Background

MEGADOCK-GPU

Evaluation of Performance

* Conclusion

14

Graphics Processing Unit

 GPU (Graphics Processing Unit)
— Processers for Graphics processing

— Computational performance of GPUs overtakes
that of CPUs

— High efficiency

S

N

Performance [GFLOPS] Power Consumption [W] Efficiency [GFLOPS/W]

GPU NVIDIA Tesla M2050 515 225 2.29
CPU Intel Xeon X5670 70 95 0.74

* CUDA (Compute Unified Device Architecture) g
— Development platform for GPU programming

Related Works

e GPU-accelerated bioinformatics software
—_ G PU—BLAST P. D. Vouzis, et al., Bioinformatics, 2011.
— G H OSTM S. Suzuki, et al., PLOS ONE, 2012.

— P| P E R D. Kozakov, et al., Proteins, 2006.

* FFT-based protein-protein docking software
e GPU-accelerated B.Sukhwani, et al., GPGPU-2, 2006.

— All processes were not on GPUs

15

16

Bottlenecks in MEGADQOCK CPU Version

P1. Initialization

P2. Receptor voxelization

P3. Forward FFT of a receptor

P4. Ligand rotation & voxelization

PS5. Forward FFT of a ligand

P6. Modulation

sd[due uonejo.a puesiy 10j doo

K P9. Post processes

ﬂ P8. Finding the best solutions)

&aWorkflow of MEGADOCK

{ Profile of CPU version

P8 P4
1% 3%

Time ratio (%)

— FFT part occupies 85%

17

Approach(l) GPU Implementation of main processes

e PS5, P7: Forward FFT & Inverse FFT
— Accelerated by using NVIDIA CUFFT library

* P6: Modulation
— Modulation: complex conjugates and multiplication

FFT[R]* x FFT[L]

— Parallelized by voxel element

18

Approach(l) GPU Implementation of main processes

 P5, P6, P7: Forward FFT, Modulation, Inverse FFT Processes
are performed on GPUs

CPU GPU
Memory Memory

 However large temporary data
Date Transfer >

should be transferred
P5, P6, P7

Data transfer \/7
P4 ,‘, PS, P6, P7 ,|, P8 4
 — <€ > <> N Data Transfer
P> > P8
1 loop for rotational angle

7\

(1D GPU Implementation of main processes

* P4: Ligand voxelization

— Voxelization: assigning a value

to each voxel based on atom radius

— Parallelized by atom

* P8: Finding the best solutions
— Using reduction method

e All processes (P4) — (P8)
are performed on GPU

19

\| ——atom

K]

|, van der Waals radius

|:] : Filled voxel by atom
D : Empty voxel

~~~~~~~~

= avoid to transfer large temporary data

el
P7
0 Time ratio (%) LE
45%



20
(2 Optimization of FFT Size

* FFT size is decided based on the protein size
* FFT runtime seems to be proportional to FFT size

* However, CUFFT library may drastically slow down

on some FFT sizes

— Original MEGADOCK uses FFTW library
and the influence of this problem is small

e According to the manual,
CUFFT library shows the best performance on condition that:

FFT size N = 2% x 3% x 5¢ x 7¢



Approach(® Optimization of FFT Size

21

and runtime

50 "
40 l

30 CDQ s A

20 o wer\:;fy

10
120 NM 2\5

Even if the minimum FFT size is 121
runtime would be shorter selecting size 125

|
Relation between FFT size
CUFFT runtime [sec]
1000
100
10 B N = prime
1l ® N =2"x3"x5xT74
A N = none of the above
1 [ )
55 105 155 205 255
FFT size

=>Select FFT size from only FFT sizes that CUFFT library can process efficiently




22

B3 Using full computing resources in a node

* QOur computing systems TSUBAME 2.0
— Multiple CPU cores and GPUs

e TSUBAME 2.0 thin node: 12 CPU cores and 3 GPUs

— Assign decomposed works to multiple CPU cores and GPUs dynamically
* 3 CPU cores & 3 GPUs: used as GPU version
* 9 CPU cores: used as CPU version




Outline

* Background

* MEGADOCK-GPU

 Evaluation of Performance

* Conclusion

23



Experiment Environment

* Computation Environment

Tokyo Tech TSUBAME 2.0 Thin Node

CPU Intel Xeon X5670, 2.93[GHz] (6 cores) X 2
GPU  NVIDIA Tesla M2050, 1.15[GHz] (448 cores) X 3
Memory 54[GB]
FFT library FFTW (CPU), CUFFT (GPU)

* Dataset

— Protein-Protein Docking Benchmark 4.0
e Typical benchmark for protein-protein docking problem

* 352 protein pairs

* Measurement
— Total docking calculation time of 352 protein pairs

24



25

Comparison of each process (1 CPU core vs. 1 CPU core and 1 GPU)

e Comparison of CPU version and GPU version

1. FFT, Modulation: 20-30-fold faster

2. Voxelization,
Finding the best solutions: 2-6-fold faster

3. Onlyinitialization process slows down

P1. Initialization

P4. Ligand rotation & voxelization

P5. Forward FFT of a ligand

P6. Modulation

because of GPU initialization

sa[sue uonejoa puesif a0y doo|

ﬂ P8. Finding the best solutions )

k PO9. Post processes )

ceuver I
GPU ver -

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Docking time (hour)




26

Comparison of total docking runtime

* Comparison of CPU version and GPU version &

Docking time (hour)
80.0

73.5

70.0 -

60.0 -
50.0 -

40.0 -

30.0 -

20.0 -
8.2

m =
| | I

1CPU core 1CPU core & 1GPU 12CPU cores 12CPU cores &
3GPUs

10.0 -

0.0 -




, 2/
Conclusion

* We have accelerated docking calculation of MEGADOCK
— 1 CPU core & 1 GPU: 13.9-fold acceleration
— 12 CPU cores & 3 GPUs: 37.0-fold acceleration

e Ex.) Prediction for an apoptosis pathway
— Runtime in 1 CPU core: 217 days

.

— Runtime in 12 CPU cores & 3 GPUs : 6 days

MEGADOCK-GPU is freely available at www.bi.cs.titech.ac.jp/megadock/gpu/



http://www.bi.cs.titech.ac.jp/megadock/gpu/

