
Efficient Hyperparameter Optimization by Using Bayesian Optimization
for Drug–Target Interaction Prediction

Tomohiro Ban1,2, Masahito Ohue1,3,4, Yutaka Akiyama1,2,3,4,5,∗
1School of Computing, Tokyo Institute of Technology, 2-12-1 W8-76 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

2Education Academy of Computational Life Sciences, Tokyo Institute of Technology,
2-12-1 W8-93 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

3Advanced Computational Drug Discovery Unit, Institute of Innovative Research, Tokyo Institute of Technology,
4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan

4AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), National Institute
of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8560, Japan

5Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced
Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
*Email: akiyama@c.titech.ac.jp; Tel: +81-3-5734-3645; Fax: +81-3-5734-3646

Abstract—A Bayesian optimization technique enables a short
search time for a complex prediction model that includes
many hyperparameters while maintaining the accuracy of the
prediction model. Here, we apply a Bayesian optimization
technique to the drug–target interaction (DTI) prediction
problem as a method for computational drug discovery. We
target neighborhood regularized logistic matrix factorization
(NRLMF) (Liu et al., 2016), which is a state-of-the-art DTI
prediction method, and accelerated parameter searches with
the Gaussian process mutual information (GP-MI). Experi-
mental results with four general benchmark datasets show
that our GP-MI-based method obtained an 8.94-fold decrease
in the computational time on average and almost the same
prediction accuracy when measured with area under the
curve (AUC) for all datasets compared to those of a grid
parameter search, which was generally used in DTI predictions.
Moreover, if a slight accuracy reduction (approximately 0.002
for AUC) is allowed, an increase in the calculation speed of
18 times or more can be obtained. Our results show for the
first time that Bayesian optimization works effectively for the
DTI prediction problem. By accelerating the time-consuming
parameter search, the most advanced models can be used even
if the number of drug candidates and target proteins to be
predicted increase. Our method’s source code is available at
https://github.com/akiyamalab/BO-DTI.

Keywords-drug–target interaction (DTI), Bayesian optimiza-
tion, neighborhood-regularized logistic matrix factorization
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I. INTRODUCTION

Information about the interactions between drugs and pro-
teins is important for the derivation of early drug candidate
compounds in drug discovery research. Drugs are generally
known to interact with one or more proteins and show their
efficacy by modulating the operations of proteins [1]. Since
the presence of unexpected interacting proteins also causes
side effects, information about the interactions between
drugs and proteins is regarded as important in drug discov-
ery. However, biochemical experiments require a large cost
and time to obtain interaction information; thus, computa-
tional techniques for predicting interactions are expected (it

is known as the drug–target interaction (DTI) prediction) [2].
Many methods for predicting DTIs have been pro-

posed [2][3][4][5][6][7][8] since Yamanishi et al. formalized
the DTI prediction problem in 2008 [2]. DTI prediction
methods can be roughly categorized into approaches based
on the kernel method [2][3][4] and approaches based on
matrix factorization [5][6][7][8]. In the early days when
DTI prediction was proposed, the kernel method attracted
attention; however, several methods based on matrix factor-
ization such as multiple similarities collaborative matrix fac-
torization (MSCMF) [7] and neighborhood-regularized lo-
gistic matrix factorization (NRLMF) [8] have recently been
proposed. Currently, the state-of-the-art prediction method
for DTI is NRLMF [8]. However, learning methods such as
NRLMF and MSCMF have many hyperparameters, which
are parameters whose values are set before the learning
process, to be optimized. Furthermore, model selection has
been carried out entirely by a grid search thus far, and a
considerable amount of time has been required for learning.

In the machine-learning field, Bayesian optimization has
recently attracted attention for the efficient optimization of
hyperparameters [9][10][11]. Examples of the wide range
applications of Bayesian optimization [12] include rec-
ommendation systems [13], robotics [14], and automatic
chemical compound design [15]. There are several Bayesian
optimization methods, but the Gaussian process mutual
information (GP-MI) method proposed by Contal et al. has
good search efficiency up to the optimum solution [11].

In this study, Bayesian optimization was applied for the
first time to the DTI prediction problem with the purpose of
reducing the computation time for hyperparameter optimiza-
tion. By using four benchmark datasets widely used in DTI
prediction, the efficiency of hyperparameter optimization
was compared for Bayesian optimization and a grid search
by cross-validation (CV), and the results show that Bayesian
optimization is effective for hyperparameter optimization for
the DTI prediction problem.
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Table I: Statistics of the drug–target interaction datasets.

Statistics Nuclear
receptor

GPCR Ion
channel

Enzyme

No. of drugs 54 223 210 445

No. of targets 26 95 204 664

No. of interactions 90 635 1476 2926

II. MATERIALS AND METHODS

A. Materials

To evaluate our prediction method, we employ a general
benchmark dataset [2] used for drug–protein interaction
prediction [2][3][4][5][7][8]. The benchmark consists of four
DTI datasets—Nuclear receptor, GPCR, Ion channel, and
Enzyme—which are defined by three types of matrices.
Each dataset consists of an interaction matrix, a drug
similarity matrix, and a target (protein) similarity matrix.
The interaction matrix is an adjacency matrix that takes a
value of 1 if activity is experimentally confirmed between
the drug and the target protein, and takes a value of
0 otherwise. Interaction information is obtained from the
KEGG BRITE [16], BRENDA [17], SupterTarget [18], and
DrugBank [19] databases. Table I summarizes the statistical
information of the interaction matrix in each dataset. Note
that even if it takes a value of 0, an interaction may be
observed in the future by an experiment, and it can be
assigned a value of 1. The chemical structures of the drug
are obtained from the KEGG LIGAND database [16], and
the Tanimoto coefficient (calculated by SIMCOMP [20]) is
used for the similarity between drugs. Amino-acid sequences
obtained from the KEGG GENES database [16] are used for
the proteins, and the similarity between proteins is calculated
using the normalized Smith–Waterman score. These datasets
can be obtained at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/
drugtarget/.

B. Problem Formalization

In this paper, we denote the set of drugs as D = {di}nd
i=1

and set the target to T = {tj}nt
j=1, where nd and nt are

the number of elements in sets D and T , respectively. The
interaction matrix is represented by the adjacency matrix
Y ∈ {0, 1}nd×nt . When an interaction between a drug di
and a target tj has been confirmed experimentally, Yij = 1
(to indicate an interaction pair); otherwise, Yij = 0 (for
an unknown pair). In particular, in the interaction matrix,
we denote the drugs without interacting target proteins
as D− = {di ∈ D | ∀l,Yil = 0} (negative drugs).
We denote the targets without any interaction drugs as
T − = {tj ∈ T | ∀l,Ylj = 0} (negative targets). Moreover,
let D+ = D\D− be positive drugs, and let T + = T \T −

be positive targets. Let (Sd)il ∈ [0, 1] be the similarity
between drugs di and dl, and let Sd ∈ [0, 1]nd×nd be the
drug similarity matrix. Similarly, let the similarity between
targets tj and tl be (St)jl ∈ [0, 1] and St ∈ [0, 1]nt×nt be

the target similarity matrix. The aim of this problem is to
assign scores to unknown pairs and rank drug and target
pairs in descending order of the likelihood of interaction.

C. NRLMF

NRLMF [8] is a state-of-the-art method for predicting
the interactions between drugs and targets based on matrix
factorization.

1) Interaction Probability: The possibility that drug di
and target tj interact is evaluated by the interaction proba-
bility pij calculated from latent feature vectors of the drug
and target. The latent feature vector of drug di is represented
by ui ∈ Rr, and the latent feature vector of the protein tj
is represented by vj ∈ Rr, where r is a hyperparameter
representing the number of dimensions of the latent feature
vector. U ∈ Rnd×r is a latent feature matrix that has the
latent feature vector u⊤

i as a row vector, and V ∈ Rnt×r

is a latent feature matrix that has the latent feature vector
v⊤
i as a row vector. At this time, the interaction probability

between drug di and protein tj is defined as follows:

pij =
exp(u⊤

i vj)

1 + exp(u⊤
i vj)

. (1)

2) Prediction Model: We define the likelihood of interac-
tion matrix Y in the latent feature matrix U,V as follows:

Pr(Y | U,V) =

nd∏
i=1

nt∏
j=1

p
cYij

ij (1− pij)
1−Yij , (2)

where c > 0 is a hyperparameter for balancing the number
of interaction pairs and unknown pairs. For latent feature
matrixes U and V, the multivariate normal distribution with
a mean of 0 and the prior distribution are defined as

Pr(U | Σd) =

nd∏
i=1

N (ui | 0,Σd), (3)

Pr(V | Σt) =

nt∏
j=1

N (vj | 0,Σt), (4)

where the variance–covariance matrices are expressed as
Σd = (λdId+αLd)

−1 and Σt = (λtIt+βLt)
−1. Moreover,

λd, λt, α, β > 0 are hyperparameters, and Id ∈ Rnd×nd and
It ∈ Rnt×nt are identity matrices. Ld ∈ Rnd×nd ; when the
K1-nearest neighbors for the drug NNK1(di) ⊂ D\{di},
the matrix that satisfies the following relationship:

nd∑
i=1

nd∑
l=1

ail∥ui − ul∥2
2 = tr(U⊤LdU), (5)

ail =

{
(Sd)il if dl ∈ NNK1(di)

0 otherwise
, (6)

where ∥ · ∥2 is the Euclidean norm. Lt ∈ Rnt×nt is defined
in the same way.
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3) Estimation and Scoring: Using Bayes’ theorem, the
posterior distribution of the latent feature matrices is con-
sidered using (7), and MAP estimation is performed using
(8), thereby obtaining solutions Û and V̂.

Pr(U,V | Y) ∝ Pr(Y|U,V) Pr(U|Σd) Pr(V|Σt) (7)

Û, V̂ = argmax
U,V

Pr(U,V | Y) (8)

The optimization algorithm for obtaining the solution uses
the alternating gradient descent method [21]. In addition,
AdaGrad [22] with hyperparameter θ corresponding to the
gradient coefficient increases the rate of learning. In the
estimated solutions to Û and V̂, the values for negative
drugs and negative targets are modified. For a negative drug
di ∈ D−, let the K2-nearest neighbors of positive drugs be
NNK2

(di) ⊂ D+, where ûi ∈ Rr is the transposed row
vector of the i-th row of the estimated solution Û. At this
time, the latent feature vector of the drug di is corrected by
using

ũi =

ûi if di ∈ D+∑
dl∈NNK2

(di)
(Sd)ilûl∑

dl∈NNK2
(di)

(Sd)il
if di ∈ D− . (9)

We also modify the latent feature vectors of the negative
target tj ∈ T − in the same way. The score p̃ij of drug di
and target tj is calculated using the modified latent feature
vectors as follows:

p̃ij =
exp(ũ⊤

i ṽj)

1 + exp(ũ⊤
i ṽj)

. (10)

D. GP-MI

The GP-MI algorithm [11] is a state-of-the-art method for
Bayesian optimization.

1) Bayesian Optimization: f : χ → R is an implicit
function that needs to be optimized, where χ ⊂ Rn (n ∈
N) is a compact convex set. At this time, the purpose of
Bayesian optimization is to estimate the optimal solution of
the function f through consecutive queries x1, x2, ... ∈ χ.
At the (T + 1)-th iteration, the new query xT+1 is chosen
from χ on the basis of the previously obtained queries XT =
{x1, ..., xT } and the observation values YT = {y1, ..., yT }.
The relationship between the observed value y ∈ R and
the query x ∈ χ is defined using the noise ϵ according to
Gaussian distribution N (ϵ | 0, σ2) as follows:

y = f(x) + ϵ. (11)

2) Gaussian Process: The function f follows a Gaussian
process GP(m, k) [23], where m : χ → R is a mean func-
tion, and k : χ× χ → R is a kernel function. By assuming
a Gaussian process, f is supposed to be smooth implicitly.
Let the mean function be zero, i.e., m : χ → 0. The kernel

function k is uses the following squared exponential kernel:

k(x, x′) = exp

(
−1

2
∥x− x′∥2

2

)
. (12)

On the basis of the queries XT and the observation values
yT = (y1, ..., yT )

⊤ ∈ RT up to time T , the expected value
µT+1(x) and variance σ2

T+1(x) of the observation value y ∈
R for ∀x ∈ χ at time (T + 1) are defined as

µT+1(x) = kT (x)
⊤C−1

T yT , (13)

σ2
T+1(x) = k(x, x)− kT (x)

⊤C−1
T kT (x), (14)

where kT (x) = [k(xτ , x)]xτ∈XT
∈ RT , and CT = KT +

σ2I (KT = [k(xτ , xτ ′)]xτ ,xτ′∈XT
∈ RT×T ). σ2 ∈ R is the

variance of the noise, and I ∈ RT×T is the identity matrix.
3) Algorithm: The GP-MI algorithm selects the next

query xτ ∈ χ using µτ (x) and σ2
τ (x) calculated using (13),

(14), and
xτ = argmax

x∈χ
µτ (x) + ϕτ (x), (15)

where ϕτ : χ → R is an increasing function of σ2
τ (x).

Function ϕτ is expressed using parameters δ and γτ−1 as

ϕτ (x) =

√
log

2

δ

(√
σ2
τ (x) + γτ−1 −

√
γτ−1

)
, (16)

where γτ−1 =
∑τ−1

τ ′=1 σ
2
τ ′(xτ ′). δ > 0 is a hyperparameter

of the GP-MI algorithm, and its termination condition is
xτ+1 = xτ .

III. RESULTS AND DISCUSSION

By comparing the calculation time and prediction accu-
racy of a grid search and Bayesian optimization by CV, we
confirm that the calculation time is reduced while maintain-
ing the prediction accuracy.

A. Experimental Settings

Four datasets, Nuclear receptor, GPCR, Ion channel, and
Enzyme, as mentioned in Sect. II-A, were used. In order
to measure the calculation time and prediction accuracy
(the area under the receiver operating characteristic curve
(AUC)) of the grid search and Bayesian optimization, 10-
fold CV was performed 200 times, and there were 200
samples (one sample consists of the average computational
time and average AUC) for each optimization method. Note
that there is correspondence between each sample of the grid
search and Bayesian optimization. The sample size is 200,
where the effect size evaluated by Cohen’s d [24] is 0.2, the
significance level is 0.05, and the statistical power is 0.8 or
more when a t-test with the correspondence relationship is
carried out. The definition of Cohen’s d is given by

d =
x̄GS − x̄BO

s
, (17)
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Table II: Computational times [sec] for a grid search and Bayesian optimization (GP-MI).

Dataset Grid search GP-MI

δ = 10−100 δ = 10−80 δ = 10−60 δ = 10−40 δ = 10−20 δ = 100

Nuclear receptor 2135± 15 250± 73 246± 66 233± 61 207± 65 104± 37 30± 47

GPCR 19066± 80 2092± 95 2053± 86 1974± 91 1705± 95 965± 224 140± 68

Ion channel 32687± 133 3926± 146 3864± 138 3743± 165 3259± 154 1823± 403 230± 100

Enzyme 225493± 2682 23070± 751 22714± 728 22004± 743 19092± 818 10845± 2184 1521± 673

0.90 0.91 0.92 0.93 0.94 0.95 0.96
AUC [0, 1] : Area under the curve
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Figure 1: Probability densities of the AUC in the hyperpa-
rameter optimization of NRLMF by using a grid search and
Bayesian optimization (GP-MI). Each AUC is an average
value of the 10-fold CV of a hyperparameter tuple chosen
from 2688 combinations iteratively. The GP-MI algorithm
is terminated after 264 iterations.

s =

√
(nGS − 1)s2GS + (nBO − 1)s2BO

nGS + nBO − 2
, (18)

where nGS , x̄GS , and sGS are the sample size, average
value, and unbiased standard deviation of the samples for the
grid search, respectively; and nBO, x̄BO, and sBO are the
sample size, average value, and unbiased standard deviation
of the samples for Bayesian optimization, respectively.

To divide the data in the CV, we used the CV scenario
(CVS1) according to the NRLMF paper [8]. In this scenario,
the drug–target pairs were divided into 10 sets with almost
the same size, regardless of whether they were interaction
pairs or unknown pairs. One of the ten sets was used as test
data, and an adjacency matrix in which the values of the test
data are replaced with zero was used as training data. Each
set became test data iteratively, and the computational time
and AUC were measured 10 times. Then, one sample can

be obtained from the mean of the computational time and
the mean of the AUC for 10-fold CV.

The hyperparameter of NRLMF adopted the settings
reported in [8], c = 5, K1 = K2 = 5, r = {50, 100},
α = {2−5, 2−4, ..., 22}, β = {2−5, 2−4, ..., 20}, λd =
λt = {2−5, 2−4, ..., 21}, and θ = {2−3, 2−2, ..., 20}.
At this time, the set of hyperparameters is a subspace
in R9 with 2688 elements, which corresponds to χ for
Bayesian optimization. We set the GP-MI parameter to δ =
{10−100, 10−80, ..., 100}. In addition, the kernel function in
the Gaussian process used the squared exponential kernel in
(12), and the noise variance was set to σ2 = 0.1.

All calculations were conducted on the TSUBAME 2.5
supercomputing system of the Tokyo Institute of Tech-
nology, Japan. We used one CPU core of its thin node,
which consists of two Intel Xeon 5670 processors (6 cores)
running at 2.93 GHz with 54 GB RAM, on the SUSE Linux
Enterprise Server 11 SP3 operating system.

B. Computational Time
Table II summarizes the computational times for the

grid search and Bayesian optimization. Comparing Bayesian
optimization with δ = 10−100 and the grid search, the
computational time was decreased by 8.54 times for Nuclear
receptor, 9.11 times for GPCR, 8.33 times for Ion channel,
and 9.77 times for Enzyme. On the other hand, comparing
Bayesian optimization with δ = 10−20 and the grid search,
the computational time was decreased by 20.53, 19.76,
17.93, and 20.79 times for the Nuclear receptor, GPCR, Ion
channel, and Enzyme datasets, respectively. These results
show that Bayesian optimization (GP-MI) can reduce the
computational time by a factor of 8.94 or more on average
compared to a grid search. Further, if the number of hy-
perparameters is the same, the same speed increase can be
expected regardless of the size of the dataset. As a property
of the Bayesian optimization parameter δ, a larger value of δ
results in a lower calculation time. (However, a larger value
of δ results in a tendency to fall into a local solution; thus,
the calculation time is lowered, but the prediction accuracy
tends to deteriorate.)

The behavior of a searched space in which histograms
compared GP-MI with δ = 10−100 and Grid search using
AUC is shown in Fig. 1. This figure shows that the GP-
MI algorithm searched the entire hyperparameter space with
fewer searches.
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Figure 2: Box plots of the average AUCs (1-time 10-
fold CV) consisting of 200 samples for each dataset and
optimization scenario. GS indicates grid search; BO1, GP-
MI with δ = 10−100; BO2, GP-MI with δ = 10−80; BO3,
GP-MI with δ = 10−60; BO4, GP-MI with δ = 10−40; BO5,
GP-MI with δ = 10−20; and BO6, GP-MI with δ = 100.

Figure 3: Plot of Cohen’s d between the grid search and
Bayesian optimization for each dataset.

C. Prediction Accuracy

Fig. 2 shows box plots of the AUCs for grid search
and Bayesian optimization. These results show that the

prediction accuracy of Bayesian optimization is close to
that of the grid search when the parameter δ is smaller.
Performance on the Nuclear receptor dataset (Fig. 2(a))
has larger variances than on the other datasets because
its size is smaller. Comparing Bayesian optimization with
δ = 10−100 and the grid search, the difference in the average
AUCs for these methods is 0.0012 for Nuclear receptor,
0.0001 for GPCR, less than 0.0001 for Ion channel, and
less than 0.0001 for Enzyme. On the other hand, comparing
Bayesian optimization with δ = 10−20 and the grid search,
the difference in the average AUCs for these methods is
0.0017, 0.0003, 0.0001, and 0.0004 for the Nuclear receptor,
GPCR, Ion channel, and Enzyme datasets, respectively.
These results show that the prediction accuracy of Bayesian
optimization tends to improve as the size of the dataset
becomes larger. As a property of the parameter δ, the
prediction accuracy tends to decrease as the value of δ
becomes larger, which means that the prediction accuracy
has a trade-off relationship with the computational time.

Fig. 3 shows a plot of Cohen’s d, to determine the effect
size between the grid search and Bayesian optimization.
Cohen’s d is a statistic for assessing the difference between
the mean values of two independent groups, and it can be
considered that the difference between the two groups is
small as it approaches zero. In particular, d = 0.01 is very
small (negligible), and d = 0.2 is said to be small [25]. For
Bayesian optimization with δ = 10−100, it is found that the
effect of size between these methods is 0.204, 0.035, 0.017,
and 0.043 for the Nuclear receptor, GPCR, Ion channel, and
Enzyme datasets, respectively. These results show that the
difference in the average values of the AUCs of the grid
search and Bayesian optimization is small for all datasets.
In particular, for GPCR, Ion channel, and Enzyme, which
have large dataset sizes, the difference is negligibly small.
As a property of the parameter δ, Cohen’s d converges to a
certain value greater than zero when δ is sufficiently small.

IV. CONCLUSION

We proposed an optimization for hyperparameter searches
with Bayesian optimization (GP-MI) [11] using the state-of-
the-art method NRLMF [8] to predict interaction between
drugs and proteins. In the computational experiment, 10-fold
CV was performed 200 times for a statistical comparison
with four datasets, Nuclear receptor, GPCR, Ion channel, and
Enzyme. As a result, it was shown that the computational
time for Bayesian optimization was reduced by a factor of
8.94 on average compared to that for a grid search. Although
the prediction accuracy (AUC) of Bayesian optimization
was inferior to that of the grid search, the Cohen’s d for
the effect size was shown to be about 0.01–0.2 when the
parameter δ was sufficiently small. This means that the
prediction accuracy of Bayesian optimization is sufficiently
close to that of the grid search. These results enabled us to
conclude that the optimization of the hyperparameter search
can be accelerated to predict interaction between drugs and
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proteins by using Bayesian optimization for a conventional
grid search.

It is possible to apply Bayesian optimization to prediction
methods such as PMF [6] and MSCMF [7], which have a
large number of hyperparameters. Moreover, by parallelizing
Bayesian optimization [26], it is possible to lower the
computational time. This is expected to enable learning to
be performed efficiently for large-scale datasets.
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