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Abstract—Metagenome techniques allow analyses of mi-
croorganisms and their genes present in a given environment
without isolation and culture. Thus, metagenomics has be-
come a broadly applied tool to study various environments
and elucidate the relationship between diseases and the host
microbiota. With continuous improvement in the performance
of genome sequencers, the number of sequence reads gen-
erated has increased exponentially; thus, methods for the
efficient processing of such large numbers of sequences are
required. To this end, we developed the pipeline system,
GHOSTMEGAN, to speed up the processing of large-scale
whole genome shotgun metagenome analysis, which integrates
the sequence homology search tool GHOSTZ-GPU and the
analyzing tool MEGAN. Assuming a cluster-type computer
with a job scheduling system, the multi-node parallel processing
of GHOSTZ-GPU and MEGAN was pipelined. Performance
evaluation of GHOSTMEGAN with a whole genome sequence
dataset, the oral metagenome demonstrated that execution of
128 nodes in parallel, which required 15 h on a single node,
could be completed in only 20 min, thereby achieving about
45 times faster calculation. This pipeline is expected to greatly
accelerate the field of metagenomics and broaden its application
potential.
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I. INTRODUCTION

The metagenome reflects the entire community of mi-

croorganisms and their genes in a certain environment. Espe-

cially, in the context of human diseases and host microbiota,

many studies have suggested an association between the

microbiome and pathogenic processes [1]–[3]. There are two

main types of metagenome analysis, namely 16S analysis,

which analyzes only 16S ribosomal RNA sequences, which

are used as a fingerprint of the species and identify only

the species of microbes, and whole genome shotgun (WGS)

analysis, which analyzes the entire microbial genome. Al-

though 16S analysis incurs only a small computing cost for

the sequence search, it provides information only about the

microbial taxa in a given environment. In WGS analysis,

a sequence homology search is performed for all reads

derived from microorganisms; therefore, even if the genome

is not sequenced, it is possible to estimate the function of

unknown sequences from the alignment with homologous

genes. Thus, the biological role in the environment can

be clarified with higher-resolution analysis. However, the

drawback of WGS analysis is the substantial amount of data

and also bigger reference database size required compared

to 16S analysis; therefore, speeding up the process by using

a parallel distributed technology is crucially needed.

In WGS metagenome analysis, an analysis pipeline is

mainly performed by combining two main processes: a

sequence homology similarity search and an analysis, which

corresponds to a post-processing step, that transforms the

search results into a form that is easy to interpret. Tra-

ditionally, BLAST [4] has been the most widely used

tool for conducting a sequence homology search; however,

faster search methods have become available in recent

years, such as RAPSearch [5], DIAMOND [6], GHOSTZ-

GPU [7], [8], and MMseqs2 [9]. Among these, GHOSTZ-

GPU supports multi-GPU processing, which is expected to

speed up computation significantly. Suzuki et al. reported

that a homology search with GHOSTZ-GPU using three

GPUs was about 2,000 times faster than a typical BLAST

search [8]. In the output of the sequence homology search

tool, the search results are arranged for each read sequence.

In the case of metagenomic analysis, a text file with more

than tens of millions of lines is generated, which requires

analysis processing to facilitate interpretation of the specific

microbiota in the environment. Examples of standard ana-

lyzing tools used for this purpose include MEGAN [10] and

HUMAnN [11].

Traditionally, the sequence homology search step was the

main bottleneck for WGS metagenome analysis [12]. How-

ever, the development of high-speed sequence homology

search tools using GPU implementation and parallelization

such as GHOSTZ-GPU has resolved this issue; thus, the

analysis step has now become the main bottleneck for

conducting such analyses efficiently. Since substantial at-
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tention was paid to improving sequence homology searches,

attention must now focus on the development of an analysis

tool capable of processing a large number of WGS analysis

results in parallel; however, there is currently no parallel

pipeline tool that can handle a series of processes continu-

ously.

MetaWRAP [13], MEGAN [10], and MiGAP [14] were

developed as pipeline tools for WGS metagenome analysis.

However, MetaWRAP does not handle sequence homology

searches and preferably performs metagenome assembly

to connect read sequences. It does not support multi-

node parallelization. As mentioned above, MEGAN analysis

processing consists of the following three functionalities;

totaling the output of the sequence homology search using

NCBI taxonomy database [15], phylogenetic classification,

and calculation of the relative abundance of each taxon based

on the lowest common ancestor [10]. Moreover, MEGAN

has a sequence homology search function powered by DI-

AMOND, which can be used as a pipeline [10]. However,

DIAMOND does not support GPU acceleration, and thus

a high-speed sequence homology search is not possible.

MiGAP uses BLAST, and thus also cannot perform high-

speed sequence homology searches.

Therefore, to overcome these hurdles and limitations of

current tools, we here report a novel WGS metagenome

analysis system called GHOSTMEGAN that pipelines the

sequence homology search and analysis processing and

performs distributed computation on parallel computers by

linking GHOSTZ-GPU, which is the fastest sequence ho-

mology search tool that supports multi-GPU computation,

and MEGAN’s powerful analyzing function. The perfor-

mance of GHOSTMEGAN was evaluated using an actual

WGS metagenome dataset by parallel execution on the

TSUBAME 3.0 supercomputing system.

II. GHOSTMEGAN: A NEW PIPELINE TOOL FOR WGS

METAGENOME ANALYSIS

GHOSTMEGAN is a pipeline system designed to per-

form a series of WGS metagenome analysis processes

in parallel on a multi-node and multi-GPU heterogeneous

cluster. GHOSTMEGAN consists of the following four steps

(Fig. 1): A. dividing query file (single-node, CPU)—dividing

query read sequences into a predetermined number, B.
sequence homology search by GHOSTZ-GPU (multi-node,

multi-GPU)—performing a sequence homology search by

data parallelization of query sequences, C. analysis process-

ing by MEGAN (multi-node, CPU)—executing the analysis

process based on the sequence homology search results for

query sequences, and D. and integrating results (single-

node, CPU)—integrating the results of queries processed by

multiple nodes.
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Figure 1. GHOSTMEGAN pipeline workflow

A. Dividing query

The input file (query) for WGS metagenome analysis is

a huge single text file (fasta format) of read sequences. In

this step, this query file is divided using an equal number

of divisions that are represented as nodes n. Since the

processing time for dividing queries is extremely small

compared with that required for the other steps, this step

was not implemented in parallel.

B. Sequence homology search by GHOSTZ-GPU

GHOSTZ-GPU [8] is executed for individual divided

query files using one compute node. GHOSTZ-GPU per-

forms thread parallel computation using all of the CPU cores

and GPUs in one compute node. Since the reference genome

database file is typically about 100 GB, it can be stored

in the local storage in all nodes that execute the sequence

homology search. The output of GHOSTZ-GPU is a tab-

delimited text file, which is the same format provided by

a BLAST search. The analysis process only targets search

results that satisfy E-value < 10−5, so that any search results

exceeding this threshold are pruned at this step. Note that

the search results may slightly differ from those obtained

without the dividing procedure owing to the presence of

sequences with the same alignment score. However, this has

almost no effect on the final biological analysis results.

C. Analyzing by MEGAN

MEGAN [10] works on the output file of GHOSTZ-

GPU as the input. Although standard MEGAN processing
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Table I
TSUBAME 3.0 COMPUTE NODE SPECIFICATION (F NODE)

CPU Intel Xeon E5-2680v4 2.4 GHz (14 cores) × 2
GPU NVIDIA Tesla P100 NVLink (16 GB) × 4
RAM 256 GiB
Local storage Intel SSD DC P3500 2 TB
Network Intel Omni-Path 100 Gb/s × 4
Job scheduler Univa Grid Engine 8.5.4C104 11

is performed on the GUI environment, analysis can be ac-

complished on the CUI by using the MEGAN blast2rma
command. The computation is then performed independently

for each read sequence search result in the rma file, which

will not be affected by dividing of queries.

D. Integrating results

After all the analyses performed by MEGAN in paral-

lel are completed, the MEGAN compute-comparison
command is run, which integrates multiple analysis results

into a single file, and MEGAN extract-biome is then

used to summarize the integrated whole results.

Ensuring usability as a pipeline

To ensure usability, only one parameter file needs to be

edited. The parameter file is in a format that can be read

by Python configparser, and all necessary options can be

described. Main procedure is described in bash script file,

and it is possible to complete a series of executions such

as generating and executing Python programs and wrapper

shell scripts and submitting jobs to the queueing system.

III. EXPERIMENTAL SETTINGS

A. System and software environment

We evaluated the performance of our pipeline

GHOSTMEGAN on the TSUBAME 3.0 supercomputing

system (https://www.t3.gsic.titech.ac.jp/en) at Tokyo

Institute of Technology, Japan. Table I shows the hardware

specification of TSUBMAE 3.0 compute node (f node).

Each compute node has 28 CPU cores and 4 Tesla

P100 GPUs. GHOSTZ-GPU ver. 1.1.0 and MEGAN

ver. 6.12.6 were used in these experiments. The $
ghostz-gpu aln -d [DB] -b 1 -q d -a 1 -g
3 -i [query] option was used in GHOSTZ-GPU, and

the $ blast2rma --in [GHOSTZ output] --out
[MEGAN rma file] --format BlastTab option

was used in MEGAN blast2rma.

B. Dataset

The query used for performance evaluation was a portion

of the human oral WGS metagenome dataset obtained by

Duran-Pinedo et al. [16]. The query used a random sample

of 1,000,000 reads from periodontally healthy individual

samples. The query file size was 145 MB. The NCBI

nr genome sequence database was used as the reference

database, including 166,109,435 sequences with a file size

of 101 GB (ftp://ftp.ncbi.nih.gov/blast/db/, accessed August

18, 2018).

C. Evaluation method

We performed GHOSTMEGAN with n nodes running in

parallel using n of 1 (no division), 2, 4, 8, 16, 32, 64, and 128

as the query division number, respectively, and compared

the execution times and speedup rates. The execution time

did not include the waiting time from when the job was

submitted by the queueing system until the job was started.

IV. RESULTS AND DISCUSSION

A. Overall pipeline execution time

The execution times of the entire GHOSTMEGAN

pipeline for each number of nodes n are shown in Fig. 2,

and the corresponding speedup rates are shown in Fig. 3.

The results clearly showed that the computing time was

successfully reduced with an increase in the number of

parallel computing nodes, each equipped with four GPU

cards. The processing took about 15 h for one node and was

completed in about 20 min with 128 nodes, representing an

approximate 45-times acceleration in the computation speed.

However, as shown in Fig. 3, the speedup rate showed a

gradual slope with the increase in the parallel number n,

and linear speed improvement could not be obtained. Thus,

based on this evaluation dataset, it is presumed that speedup

cannot be obtained by parallelization with n = 128 or more.

B. GHOSTZ-GPU execution time

With GHOSTZ-GPU, a good speed improvement was

obtained up to n = 32, with no significant reduction in

execution time at n = 64, 128. The appropriate value of n
depends on the size of the query sequence. Therefore, with

about 1 million reads, n = 32 can be selected from the

perspective of efficiency, and n = 64, 128 can be chosen if

the reduction in calculation time is a priority with inferior

efficiency. Note that GHOSTZ-GPU was too fast, and the

speedup rate was saturated with the query data in this study.

However, if the amount of query data is increased, the

measurement of the execution time on a single node cannot

be performed.

C. MEGAN execution time

In MEGAN, the speed improvement rate was nearly linear

(strong scaling was 0.87) even at n = 128. In this study, the

measurements were only made up to n = 128 owing to

the limitations of the TSUBAME 3.0 system; however, even

higher speeds can be expected at n = 256, for example.

D. Execution times of other processes

The execution times for dividing queries, submitting jobs,

and integrating results are shown in Table II. When n
was small, these execution times were almost negligible;

however, at n = 64, 128, they were non-negligible com-

pared with the total computation time. Concerning query
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Figure 2. Execution time of the whole pipeline, GHOSTZ-GPU, and
MEGAN for different numbers of nodes run in parallel
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Figure 3. Speedup rates of the whole pipeline, GHOSTZ-GPU, and
MEGAN

Table II
EXECUTION TIMES FOR DIVIDING QUERIES, SUBMITTING JOBS, AND

INTEGRATING RESULTS

n 1 2 4 8 16 32 64 128
time (sec) - 40.4 45.8 50.3 64.8 102 151 239

decomposition, the file I/O time increased as n increased, but

this only represented a small fraction of the total time. The

reason for the increase in execution time with an increase

in the number of parallel nodes is considered to represent

the delay of the TSUBAME 3.0’s queueing system when

submitting jobs.

E. Differences in search results

GHOSTZ-GPU search results may slightly differ depend-

ing on the query sequence decomposition. As mentioned

above, this occurs because of the presence of sequences

with the same alignment score along with the limited num-

ber of higher-ranked sequences that are stored internally.

We found only two reads with different homology search

results out of 1 million reads in the parallel computing of

GHOSTMEGAN for the dataset. Table III shows the results

for each number of parallel nodes. For read a, the search

Table III
READS WHICH HAVE DIFFERENT SEARCH RESULTS ACCORDING TO

PARALLEL EXECUTION

n 1 2 4 8 16 32 64 128
read a sa s′a sa sa sa sa sa sa
read b s′b sb sb sb sb sb sb sb

sa XP 019376199.1 PREDICTED: tigger transposable
element-derived protein 1-like, partial
[Gavialis gangeticus]

s′a XP 025968818.1 LOW QUALITY PROTEIN:
tigger transposable element-derived protein 1-like
[Dromaius novaehollandiae]

sb EHH57573.1 hypothetical protein EGM 07242, partial
[Macaca fascicularis]

s′b BAD18412.1 unnamed protein product
[Homo sapiens]

results differed only with n = 2 divisions, and for read

b, the calculation results only differed when no division

was performed. sa and s′a, the hit sequences of read a,

were annotated as widely conserved equivalent genes “tigger

transposable element-derived protein 1-like,” and the result

did not affect the WGS metagenome analysis. Besides, both

sb and s′b were annotated as function-unknown genes, and

this result also did not affect the metagenome analysis at this

time. The evaluation demonstrated that GHOSTMEGAN’s

parallel computation virtually showed no difference in the

final biological analysis results.

F. Potential for speed up according to the number of parallel
compute nodes

The speed of the sequence homology search process

began to saturate at around n = 64 for this one-million-

sequence query, but the analyzing process showed an ex-

cellent speedup rate even with n = 128 in parallel. The

main contributor to this degradation in the parallelization

performance of GHOSTZ-GPU is considered to be the

increase in the calculation time of the ratio of a specific

I/O such as database chunk reading owing to the smaller

query size per process. However, the query size used this

study is for evaluation of parallel efficiency and is smaller

than the size used for the extensive metagenomic research.

For example, the periodontal disease study [16] used data

of about 37 million reads, which is much larger than the

one million reads used in this study. Therefore, in an actual

application, calculation with better parallel efficiency should

be possible even with 128 or more nodes. In this connection,

the calculation speed of GHOSTZ-GPU for n = 128 was not

slower than that for n = 64 in this study. When 128 nodes

are ensured as the computational resource, the parallelization

performance is inferior, but calculation with 128 nodes offers

the advantage of obtaining metagenome analysis results in

the fastest time.
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V. CONCLUSION

GHOSTMEGAN, a pipeline of parallelized sequence

homology search and analysis processing, was developed

and evaluated to improve large-scale metagenomic analysis.

GHOSTMEGAN achieved parallel computing by dividing

the query sequences and executing GHOSTZ-GPU and

MEGAN on multiple computing nodes. The evaluation

experiment showed that execution of 128 nodes in parallel

could be achieved in only 20 min, representing a 45-times

increase in the speed compared to the processing of one

node.

The GHOSTZ-GPU used in this evaluation is a sequence

homology search tool that was significantly accelerated by

the use of multiple GPUs, whereas MEGAN is not boosted

by GPU. Since it will be essential to withstand further

increases in data sizes in the future, GPU implementation

of analysis tools will be crucial.
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