Spresso: An ultrafast compound pre-screening method based on compound decomposition

<u>Keisuke Yanagisawa^{1,2}</u> Shogo D. Suzuki^{2,3} Takashi Ishida^{1,2,3,4} Shunta Komine^{2,3} Masahito Ohue^{1,3,4} Yutaka Akiyama^{1,2,3,4}

1. Dept. CS, School of Computing, Tokyo Tech.

2. Education Academy of Computational Life Sciences (ACLS), Tokyo Tech.

3. Dept. CS, Graduate School of Information Science and Engineering, Tokyo Tech.

4. Advanced Computational Drug Discovery Unit (ACDD), Tokyo Tech.

Education Academy of Computational Life Sciences

* The software was renamed from ESPRESSO to Spresso (same pronunciation) in October 2016.

<u>Speedy</u> <u>PRE-S</u>creening method with <u>Segmented</u> c<u>O</u>mpounds

http://www.bi.cs.titech.ac.jp/spresso/

Background

Docking-based virtual screening

Virtual screening

Compound DB

Drug candidates

Docking calculation

Background

Conformation search

Translation <u>3 dimensions</u> Rotation <u>3 dimensions</u> Internal rotation <u>N dimensions</u>

Problem: Computationally expensive

Compound pre-screening

Decreasing calculation with pre-screening

Background

Existing pre-screening methods

© 2016 Keisuke YANAGISAWA

Our approach

Structure-based

Ultrafast compared to existing method

	Ligand-based	Structure-based	Spresso
wo/ known compound	$\overline{\mathbf{S}}$	\odot	\odot
pre-screening speed	\odot	$\overline{\mathbf{S}}$	\odot

Ideas for acceleration

Idea I. Compound decomposition

Idea II. Rough compound evaluation

Method

Idea I. Compound decomposition

Creating fragments without any rotatable bond¹⁾

1) S. Komine et al., IPSJ SIG Technical Report, 2015-BIO-42, 2015.

Another benefit of decomposition

Sharing of fragment docking results for duplication

Idea II. Rough compound evaluation

Compound evaluation without re-construction

Generalized Sum-3 (GS₃) of fragment scores is adopted

$$\mathrm{GS}_3 = \sqrt[3]{\sum_f (\mathrm{score}_f)^3}$$

Method

Spresso is **open-sourced** under GPLv3 license

(http://www.bi.cs.titech.ac.jp/spresso)

An Ultrafast Pre-screening Method Based on Compound Decomposition

Introduction

Spresso (Speedy PRE-Screening method with Segmented cOmpounds) is a novel structure-based virtual screening method based on compound decomposition. Partial

Acknowledgements

