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Abstract 

Nakano and Ikeda have proposed a novel indicator called "K" to represent a growth 

status in COVID-19 spread. The K indicator was proposed for predicting the convergence 

of the epidemic and early detecting of phase changes in the trend of infection. They not 

only proposed the simple indicator itself, but also presented a background model on the 

temporal change of the K value against COVID-19 epidemic. 

In this paper, we analyzed the mathematical properties of the K indicator with their 

temporal change model, and proved that the model is essentially identical to the 

Gompertz curve which is described by a double-exponential function. In addition, we 

showed the relationships between the K indicator and other closely related indicators 

such as "growth rate", "logarithm of the growth rate", and "doubling time". Nakano and 

Ikeda derived, by fitting the real data, an empirical equation 𝑘 1 2.88𝐾′, which binds 

the internal model parameter 𝑘 with the time derivative (𝐾′) of the K indicator. Here 

we derive the same equation analytically.  

The purpose of this paper is not to follow and evaluate the whole work by Nakano 

and Ikeda, but to clarify mathematical nature of the K indicator. Thus, their excellent 

applications, i.e. investigation of the differences in epidemic trends between countries 

based on the decay pace of the K indicator, and the estimation of the number of 

independent waves of the epidemic in the United States and Japan, for example, are out 

of scope of this paper. This manuscript is a direct English translation from our previous 

work, but some notes are newly added on the relationship with the Gompertz curve. 

 

1. Definition of the K indicator 

Nakano and Ikeda [1] have proposed a novel indicator called "K" to represent a 

growth status in COVID-19 spread. The K indicator was proposed for predicting the 

convergence of the epidemic and early detecting of phase changes in the trend of infection. 

They not only proposed the simple indicator itself, but also presented a background 



2 

model on the temporal change of the K value against COVID-19 epidemic. 

In this section, the definition of the K indicator is introduced based on the paper by 

Nakano and Ikeda [1]. A date 𝑡  represents the number of elapsed days since the 

predefined reference date, and the cumulative number of people infected from the 

reference date to a specific date is noted as 𝑵 𝒕 . Then, 𝑁 𝑡 /𝑁 𝑡 7 , the growth rate 

on the cumulative number of people infected at one week ago to that on a specific date is 

focused on. (Note: notation 𝑑 was used in the original paper [1] instead of 𝑡).  

By focusing on the growth rate rather than the actual number of infected people, it is 

easier to grasp the characteristics of the epidemic, which is inherently exponential in 

nature, and allows for direct comparisons of numbers for countries with different testing 

regimes and populations. This in itself is not a new proposal, but it is an important 

starting point. They argued that comparison with a seven-day interval is effective in 

avoiding distortions in the number of reports that depend on differences of the day of the 

week, but additional discussion may be required whether this is the optimal setting for 

the length of the observation interval to capture the essence of the epidemic phenomenon 

(though it is not treated in this paper).  

In this paper, let 𝑹 𝒕  as the growth rate of cumulative number of infected people 

with a seven-day interval.  (Note: 1 𝑅 𝑡  because 𝑁 𝑡  is cumulative). 

𝑅 𝑡
𝑁 𝑡

𝑁 𝑡 7
,  where 𝑡 7 1  

The K indicator, 𝐾 𝑡  of a day 𝑡, is defined as follows, as a novel indicator for changes 

in the cumulative number of people infected. (Note: 0 𝐾 𝑡 1 ). 

𝐾 𝑡  1  
1

𝑅 𝑡
2  

When the infection converges, either temporarily or finally, increase of the cumulative 

number of infected people gradually slows down, with 𝑅 𝑡  approaching 1, and thus 

𝐾 𝑡  approaching 0.  

Nakano and Ikeda dealt with the decreasing of 𝐾 𝑡  from about 0.90 to 0.25. With 

considering the corresponding doubling times (see Section 3) for these indicator values, 

we can see that the indicator covered a sufficiently wide range of period, from the time 

of explosive spread of the infection to the time when convergence begins to appear.  

 

To discuss the nature of the K indicator, it is quite informative to consider the 

logarithm of the growth rate, 𝑳 𝒕 , while Nakano and Ikeda have not mentioned about 

logarithms in their paper.  (Note: 0 𝐿 𝑡  because 1 𝑅 𝑡 )  

𝐿 𝑡 𝑙𝑜𝑔 𝑅 𝑡 3  
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By using 𝐿 𝑡 , the definition formula of K indicator (2) can be rewritten as follow.  

𝐾 𝑡  1  𝑒 4  

As it is discussed in detail in Section 5, the essence of the proposed model is to assume 

that the K indicator decays with day 𝑡 according to a double exponential function (or a 

Gompertz curve), where 𝑘 is a constant with 0 𝑘 1 as shown in equation (5) below.  

𝐾 𝑡  1 𝑒 ∙ 5  

where 𝐿 0  seems to be not able to calculate from equation (1) and (3) because they are 

defined for 𝑡 7, but 𝐿 0  can be easily estimated later. 

While it is true that in some range the decrease can be regarded as approximately 

linear, it is also obvious that not all ranges should be considered linearly. 

 

2. Advantages of K indicator: a simple indicator of decay towards convergence  

The superiority of the proposed K indicator is that it can be easily calculated as shown 

in equation (2), yet it is a value that approaches zero at the convergence of the epidemic 

with almost monotonic decrease. It is easy to understand intuitively. The value range is 

between 0 and 1, and that approaching 0 simply means convergence. 

A further important feature is empirically shown from the COVID-19 data observed 

around the world that an almost linear decrease with the progression of date 𝑡 in a 

range of the value from 𝐾 0.9 to 𝐾 0.25. The discovery of this linearity is the major 

contribution of their paper.  

A decrease in 𝐾 𝑡  is a decrease in 𝑅 𝑡 , as can be seen from the definition (2). A 

decrease in 𝑅 𝑡  implies only a slowing of the weekly growth rate of cumulative patient 

numbers, and the new patient numbers themselves may still be increasing by a large 

multiple. Put differently, the K indicator is designed to sensitively detect a slowdown in 

the growth rate itself, even when the number of new patients is still growing significantly. 

In their paper, the slope of the temporal change of the K indicator (i.e. time derivative 

of it) is called 𝐾′. 𝐾′ is the amount of change in the K indicator per day when the K 

indicator is changing linearly and is usually negative with the decay process. Similar 𝐾′ 

values may be observed between culturally similar countries, however, there are several 

cases where 𝐾′ values differ significantly, and it is highly demanded to unravel the 

social, medical, immunological, and/or other reasons for these differences. 

Once the slope 𝐾  is calculated, it is at first glance possible to extrapolate linearly to 

find the date 𝑡  with 𝐾 𝑡 0, which means the convergence of the epidemic. However, 

as we will discuss in Section 4, it is inappropriate to simply use linear extrapolation to 

find 𝑡 . The paper also suggested a more appropriate method of calculation. 
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3. Disadvantages of K indicator: difficult to imagine the increase directly 

The doubling time (DT) is a closely related indicator to the growth rate 𝑅 𝑡 . The 

doubling time is the time it takes for a number to double in an exponential phenomenon. 

When the exponential parameter representing the phenomenon is constant, the doubling 

time is also constant.  

If we observe the growth rate over the p-day period from date 𝑡 𝑝  to date 𝑡, we 

can calculate the doubling time 𝑫𝑻 𝒕  as follows. The doubling time has a dimension of 

time and the unit in this paper is a day.  

              𝐷𝑇 𝑡  
𝑝

𝑙𝑜𝑔 𝑁 𝑡 𝑁 𝑡 𝑝⁄ 6  

If the period of observation 𝑝 is set to 7 days, the equation is as follows, and the close 

relationship with each of 𝑅 𝑡 , 𝐿 𝑡  and 𝐾 𝑡  can be expressed. 

𝐷𝑇 𝑡  
7

𝑙𝑜𝑔 𝑁 𝑡 𝑁 𝑡 7⁄
7  

            
7

𝑙𝑜𝑔 𝑅 𝑡
                     8  

            
7 𝑙𝑜𝑔 2

𝐿 𝑡
                    9  

          
7

𝑙𝑜𝑔 1 𝐾 𝑡
       10  

 

Table 1 shows the relationship between the growth rate 𝑅 𝑡 , the logarithm of the 

growth rate 𝐿 𝑡 , the ratio of 𝑅/𝐿, the doubling time 𝐷𝑇 𝑡 , and K indicator 𝐾 𝑡 .  

It is worthwhile to look carefully at the correspondence between the K indicator and 

doubling time. For example, 𝐾 𝑡 0.90 corresponds to 𝐷𝑇 𝑡 2.11, which means that 

the cumulative number of people infected doubled in about two days. On the other hand, 

𝐾 𝑡 0.25 corresponds to 𝐷𝑇 𝑡 16.87, which means that the cumulative number of 

people infected doubled in about half a month. Though this is a relatively slow pace, the 

same number of new infections appear in the next half month as the cumulative number 

over the past several months. Even if it decays to 𝐾 𝑡 0.15, which corresponds to 

𝐷𝑇 𝑡 29.86, the same number of new infections appear in the next one month as the 

cumulative number up to the present. The doubling time has been widely used as an 

intuitive indicator of the status of increase which can directly grasp and estimate the 

real number of infected people in the coming period. 
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The actual number of cumulative infections 𝑁 𝑡  in the period just prior to the 

convergence is large, and thus the burden on health care institutions from the new 

increase is severe, even if the growth rate itself seems to be moderate. The K indicator 

is attractive, but one small drawback may be that it is difficult to see directly the heavy 

fact that intense increases continue even with small values of 𝐾 𝑡 . This issue is further 

emphasized with the careless use of coarse linear extrapolation, which will be discussed 

in Section 4.  
 

Table 1  The relationship between the growth rateＲ, the logarithm of the growth 
rate 𝐿, the 𝑅/𝐿 ratio, the doubling time 𝐷𝑇, and the K indicator 𝐾. 

 

days growth 
rate 

log of the 
growth 

rate 

R / L 
ratio 

doubling time 
[day] K indicator 

P R L = Loge R R / L DT = P / Log2 R K = 1 - 1 / R 

7 1.05 0.05 20.52 94.59 0.05 

7 1.11 0.11 10.55 46.05 0.10 

7 1.18 0.16 7.24 29.86 0.15 

7 1.25 0.22 5.60 21.74 0.20 

7 1.33 0.29 4.63 16.87 0.25 

7 1.43 0.36 4.01 13.60 0.30 

7 1.54 0.43 3.57 11.26 0.35 

7 1.67 0.51 3.26 9.50 0.40 

7 1.82 0.60 3.04 8.12 0.45 

7 2.00 0.69 2.89 7.00 0.50 

7 2.22 0.80 2.78 6.08 0.55 

7 2.50 0.92 2.73 5.30 0.60 

7 2.86 1.05 2.72 4.62 0.65 

7 3.33 1.20 2.77 4.03 0.70 

7 4.00 1.39 2.89 3.50 0.75 

7 5.00 1.61 3.11 3.01 0.80 

7 6.67 1.90 3.51 2.56 0.85 

7 10.00 2.30 4.34 2.11 0.90 

7 20.00 3.00 6.68 1.62 0.95 

7 33.33 3.51 9.51 1.38 0.97 
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4. In case the K indicator is assumed to decrease linearly 

It is quite interesting that the K indicators calculated from the cumulative number of 

COVID-19 cases in several countries showed approximately linear decrease with respect 

to date 𝑡  over a relatively long period of time. This is one of the benefits of the K 

indicator. In this section, we examine the requirements of the model by making a false 

assumption that the K indicator decreases linearly over time. 

If the time derivative of 𝐾 𝑡  is constant and is represented by the constant 𝐾 , the 

following equations hold.  

  𝐾
𝑑𝐾
𝑑𝑡

𝑑𝐾
𝑑𝑅

∙
𝑑𝑅
𝑑𝑡

1
𝑅

 ∙
𝑑𝑅
𝑑𝑡

11  

𝐾 𝑑𝑡
1

𝑅
𝑑𝑅 𝐶 12  

𝐾 𝑡
1

𝑅 𝑡
1

𝑅 0
13  

𝑅 𝑡
𝑅 0

1 𝑅 0 𝐾 𝑡
14  

𝐾 𝑡 1
1

𝑅 0
𝐾 𝑡 15  

As shown on equation (14), the denominator of the 𝑅 𝑡  increases by a constant 

𝑅 0 𝐾  (Note: 𝐾 0) for each day, and 𝑅 𝑡  decreases relatively rapidly. The K 

indicator 𝐾 𝑡  is expressed as a linear function of the slope 𝐾  and the intercept 

1  as shown in equation (15).  

Then the date 𝑡  with 𝐾 𝑡 0 is found by the following formula. 

𝑡
1

𝐾
 1

1
𝑅 0

16  

 

On this simple model, 𝐾 𝑡 0 and 𝑅 𝑡 1 at date 𝑡 , represented by equation 

(16), and the cumulative number of people infected 𝑁 𝑡  stops increasing completely. 

However, the trajectories of the measured K indicators for China and the USA in 

Figure 1 of the paper [1] showed that the K indicator ceased to fall from the middle of 

the trajectory and it is revealed that the assumption is unrealistic to go to zero in a 

straight line.  

Here, we explicitly mention the serious caveat so as not to misunderstand their 

proposal of the K indicator. Although both "the K indicator decreases linearly in some 



7 

period" and "the various properties of the epidemic can be analyzed from the slope 𝐾  in 

such period" are considered true, it is inappropriate to immediately believe in linear 

equation (15) in all ranges of time and calculate the convergence date 𝑡  by equation 

(16). The paper did not propose such calculation. 

 

Their paper proposed an alternative mathematical model for discussing the end stage 

of the epidemic rather than linear equations (15), and proposed to make observations of 

the slope 𝐾′ just to estimate the parameter 𝑘 of their background model. However, 

equations (15) and (16) are so clear, and thus there is a danger of misunderstanding.  

Verification with the three examples of simulated calculations presented in the 

Supplement of their paper [1] indicated that 𝐾 𝑡 0.2 still remains in actual at the 

date 𝑡  obtained by equation (16). As shown in Table 1, 𝐾 𝑡 0.2  corresponds to 

𝑅 𝑡 1.25 , which means that the cumulative number of people infected is still 

increasing by a factor of 1.25 each week. The number will still increase significantly 

while the rate continues for some time.  

 

5. The model assuming that the logarithm of the growth rate decreases with time 

approximately according to a geometric series 

In the paper by Nakano and Ikeda [1], it was stated that they found the general 

property that the K values decay approximately linearly in certain period, and it is also 

argued that the slope 𝐾  of the line is an important parameter, but it is by no means 

simply believed that the linear equation (15) described in the previous section and that 

the epidemic converges completely on the date 𝑡 , which is obtained by equation (16). 

The model assumed by the paper is more complex and is as follows. 

𝑁 𝑡 1 𝑁 𝑡  ∙  𝑒 17  

𝑎 𝑡 𝑘 ∙  𝑎 𝑡 1  18  

 

The cumulative number of infected people 𝑁(t) increases monotonically. When the 

multiplier of the daily increase is expressed as an exponential function, the exponent 

𝑎 𝑡  changes daily (without loss of generality thus far).  

They assumed that the exponent 𝑎 𝑡  decays with 𝑡 as the constant 𝑘 0 𝑘 1  is 

multiplied daily as shown in (18). This 𝑘 is assumed to be a constant for a reasonable 

period of time (depending on some background of social interventions, cultural lifestyle, 

and innate immunity of the population, etc.). Needless to reiterate, it is important to 

remember that the number of 𝑁 𝑡  itself will continue to increase, even if the exponent 
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𝑎 𝑡  decays from day to day, since 𝑎 𝑡  is still a positive number. 

In order to understand the above model, it is useful to consider the change in 𝐿 𝑡  in 

equation (3). It should be noted that equation (18) above expresses the change from one 

day to the next, while 𝑅 𝑡  in equation (1) and 𝐿 𝑡  in equation (3) look at the change 

from 7 days ago.  

𝐿 𝑡      𝑙𝑜𝑔
𝑁 𝑡

𝑁 𝑡 1
∙

𝑁 𝑡 1
𝑁 𝑡 2

∙
𝑁 𝑡 2
𝑁 𝑡 3

∙ ⋯ ∙
𝑁 𝑡 6
𝑁 𝑡 7

      𝑎 𝑡 1 𝑎 𝑡 2 𝑎 𝑡 3 ⋯ 𝑎 𝑡 7
 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 1  ∙ 𝑎 𝑡 7

 𝑘 1
𝑘 1

 ∙ 𝑎 𝑡 7                                                   

19

 

         𝐿 𝑡 1 𝐿 𝑡 𝑎 𝑡 ⋯ 𝑎 𝑡 6 𝑎 𝑡 1 ⋯ 𝑎 𝑡 7

   𝑎 𝑡 𝑎 𝑡 7
          𝑘 1  ∙ 𝑎 𝑡 7

20

 

𝐿 𝑡 1 𝐿 𝑡
𝐿 𝑡

 1 𝑘                                                 21  

According to equation (21), the logarithm 𝐿 𝑡  decreases at a rate of 1 𝑘  every 

day, approaching 0.  
From the above discussion, difference and differential equations for 𝐿 𝑡  can be 

formulated as follows, and its solution is obtained. 

                            𝐿 𝑡 ∆𝑡 𝐿 𝑡  1 𝑘   𝐿 𝑡  ∆𝑡                                           22  

           lim
∆ →

 𝐿 𝑡 ∆𝑡 𝐿 𝑡
∆𝑡

  1 𝑘   𝐿 𝑡                                           23  

𝑑𝐿
𝑑𝑡

 1 𝑘  𝐿 24  

𝐿 𝑡  𝐿 0 ∙ 𝑒 25  

where 𝐿 0  cannot be directly defined from equation (3), but is easily estimated from 
𝐿 7  and other data series based on equation (25).  

By substituting the obtained equation (25) into equation (4), we obtain equation (5) 

shown in Section 1. 
𝐾 𝑡  1 𝑒 ∙ 5  

 
 The difference formula (22) is based on a linear approximation to estimate 𝐿 𝑡 ∆𝑡 , and 
it might be more precise, by considering the nature of geometric series, to use the following 
difference formula (26) instead, and then the solution is obtained as follows. 
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                                  𝐿 𝑡 ∆𝑡 𝐿 𝑡  1 𝑘∆   𝐿 𝑡                                               26  

                            lim
∆ →

 𝐿 𝑡 ∆𝑡 𝐿 𝑡
∆𝑡

  lim
∆ →

1 𝑘∆   
∆𝑡

 𝐿 𝑡   lim
∆ →

1 𝑘∆  ′ 
∆𝑡′

 𝐿 𝑡     27  

𝑑𝐿
𝑑𝑡

 𝑙𝑜𝑔 𝑘 ∙ 𝐿 28  

𝐿 𝑡  𝐿 0 ∙ 𝑘 29  

𝐾 𝑡  1 𝑒 ∙ 30  
   Equation (30) is considered to be a more accurate mathematical formula to express the 
characteristics of the K indicator model, by its definition. Here the logarithm of the growth 
rate 𝐿 𝑡 , for discrete value 𝑡, is following a geometric series of the common ratio 𝑘 as like 
𝑎 𝑡 , The common ratio is k=0.89~0.95 according to the paper [1], thus the logarithm 𝐿 𝑡  
decreases by 5%-10% on a daily basis. 
   On the other hand, the equation (5) is still attractive for discussing the overall 
characteristics of the 𝐾 𝑡  curve. The double-exponential function is also called the 

Gompertz curve, which is named after Benjamin Gompertz, a British mathematician. 

The S-shaped curve has been widely used for modeling animal population saturation, 

new product dissemination, tumor growth, and so on [2].  (We did not at first realize the 

relationship between the double-exponential function in equation (5) and the Gompertz 

curve, but we understand it through a twitter comment [4] given on our previous work 

about the mathematical analysis of K indicator [3].) 
The two curves represented by equation (5) and (30) are only approximately overlaps, but 

are practically similar enough, because 𝑒 ≅ 𝑘  holds when   1 𝑘 ≪ 1 , and the 
common ratio 𝑘 is almost near 1.0 with using a day as the unit of time.  

In the rest of this paper, we employ the double-exponential equation (5) as an 
approximated curve for the K indicator epidemic model. 
 

Now, based on the above-mentioned double-exponential model, we again consider the 

time derivative of the K indicator. 

  
𝑑𝐾
𝑑𝑡

𝑑𝐾
𝑑𝑅

∙
𝑑𝑅
𝑑𝑡

    
1

𝑅
 ∙

𝑑𝑅
𝑑𝑡

          1
𝑅

∙  𝑅
𝑑 𝑙𝑜𝑔 𝑅

𝑑𝑡

 1
𝑅

∙  
𝑑𝐿
𝑑𝑡

     
𝑘 1
𝑅/𝐿

31
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As shown in equation (31), the time derivative of the K indicator is not constant and 

the 𝑹/𝑳 ratio appears in the denominator.  

Table 1 shows that the 𝑅/𝐿 ratio takes a minimum value around 𝐾 𝑡 0.65 and 

rises slowly from there. The minimum of the 𝑅/𝐿 ratio can be determined accurately by 

solving the following equation: 

  
𝑑

𝑑𝑅
 

𝑅
𝑙𝑜𝑔 𝑅

0 32  

It is obtained the minimum value of 𝑅 𝐿⁄ 𝑒 2.7183  when 𝑅 𝑒 2.7183 

(Napier’s number).  It corresponds to 𝐾 1 0.6323, and then equation (31) takes 

its maximum. 

On the other hand, the 𝑅 𝐿⁄  ratio when the growth rate over seven days is exactly 

twice (𝑅 2 and 𝐾 0.5) can be obtained by the following. 

  𝑅 𝐿⁄
2

𝑙𝑜𝑔 2
2.88539 ⋯ 33  

If this fixed 𝑹 𝑳⁄  ratio can be used to approximate equation (31) around K=0.5, we 

finally obtain: 

 𝐾   
𝑑𝐾
𝑑𝑡

𝑘 1
𝑅/𝐿

≒
𝑘 1
2.885

34  

 𝑘 ≒ 1 2.885 𝐾′ 35  

which is the same equation as the slope of a straight line obtained by the real data fitting 

in Nakano and Ikeda [1]. 

 

6. Conclusion 

In this paper, we discussed the mathematical nature of the K indicator proposed by 

Nakano and Ikeda [1] for detecting the change in the cumulative number of infected 

people of COVID-19. 

The advantages of the K indicator are that it is an intuitive indicator that decays 

toward convergence and is easily computed by anyone, and that the actual data on 

COVID-19 in each country suggested that the K indicator decays almost linearly with 

time. 

A minor drawback of the K indicator is that the increasing speed is not directly 

perceptible, unlike the growth rate 𝑅 , or doubling time 𝐷𝑇 . Particular attention is 

required at times when the epidemic is nearing its convergence and the cumulative 

number of infected people 𝑁 becomes large.  

The essence of the epidemic model proposed in their work is that the logarithm 𝐿 of 
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the growth rate decreases towards zero almost following a geometric series as shown in 

equation (25) or (29). The K indicator itself decreases approximately according to a 

double exponential function shown in equation (5) or (30).  

With following the model as described in Section 5, the time derivative of the K 

indicator is not inherently constant and depends on the 𝑅/𝐿 ratio, as shown in equation 

(31). However, the linear model in equations (34) and (35) is obtained by fixing the 𝑅/𝐿 

ratio at 𝑅 𝐿⁄ 2.885 , which is equivalent to 𝑅 2  and 𝐾 0.5 . Thus, the linear 

approximation only holds around 𝐾 0.5. It is possible to determine to what extent this 

approximation holds by how much the 𝑅/𝐿 ratio deviates from the above value. 

The K indicator is attractive, and the background model in which the logarithm 

𝐿 decreases following a geometric series is well-fitting to the real COVID-19 data. 

However, a more accurate approach to finding the common ratio 𝑘 of the geometric 

series should be to directly deal with the temporal change in the data of the logarithm 𝐿 

itself, which can be easily calculated, rather than a fit mediated by the approximated 

equation (35).  
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